Loading…

Lipid-Based Molecules on Signaling Pathways in Autism Spectrum Disorder

The signaling pathways associated with lipid metabolism contribute to the pathophysiology of autism spectrum disorder (ASD) and provide insights for devising new therapeutic strategies. Prostaglandin E2 is a membrane-derived lipid molecule that contributes to developing ASD associated with canonical...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2022-09, Vol.23 (17), p.9803
Main Authors: Yui, Kunio, Imataka, George, Yoshihara, Shigemi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The signaling pathways associated with lipid metabolism contribute to the pathophysiology of autism spectrum disorder (ASD) and provide insights for devising new therapeutic strategies. Prostaglandin E2 is a membrane-derived lipid molecule that contributes to developing ASD associated with canonical Wnt signaling. Cyclooxygenase-2 plays a key role in neuroinflammation and is implicated in the pathogenesis of neurodevelopmental diseases, such as ASD. The endocannabinoid system maintains a balance between inflammatory and redox status and synaptic plasticity and is a potential target for ASD pathophysiology. Redox signaling refers to specific and usually reversible oxidation–reduction reactions, some of which are also involved in pathways accounting for the abnormal behavior observed in ASD. Redox signaling and redox status-sensitive transcription factors contribute to the pathophysiology of ASD. Cannabinoids regulate the redox balance by altering the levels and activity of antioxidant molecules via ROS-producing NADPH oxidase (NOX) and ROS-scavenging superoxide dismutase enzymes. These signaling cascades integrate a broad range of neurodevelopmental processes that may be involved in the pathophysiology of ASD. Based on these pathways, we highlight putative targets that may be used for devising novel therapeutic interventions for ASD.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms23179803