Loading…

Tracking the chaotic behaviour of fractional-order Chua’s system by Mexican hat wavelet-based artificial neural network

In this paper, a process is devised systematically to scrutinize the scrolling chaotic behaviour of fractional-order Chua's system. The process is composed of fractional Laplace transformation, artificial neural network with Mexican hat wavelet as an activation function and simulated annealing....

Full description

Saved in:
Bibliographic Details
Published in:Journal of low frequency noise, vibration, and active control vibration, and active control, 2019-12, Vol.38 (3-4), p.1279-1296
Main Authors: Khan, Najeeb A, Hameed, Tooba, Razzaq, Oyoon A, Ayaz, Muhammad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c417t-ae17c543428b059ed41c50e3075918f34c992cd1c8d79303e9e412f14e32c5663
cites cdi_FETCH-LOGICAL-c417t-ae17c543428b059ed41c50e3075918f34c992cd1c8d79303e9e412f14e32c5663
container_end_page 1296
container_issue 3-4
container_start_page 1279
container_title Journal of low frequency noise, vibration, and active control
container_volume 38
creator Khan, Najeeb A
Hameed, Tooba
Razzaq, Oyoon A
Ayaz, Muhammad
description In this paper, a process is devised systematically to scrutinize the scrolling chaotic behaviour of fractional-order Chua's system. The process is composed of fractional Laplace transformation, artificial neural network with Mexican hat wavelet as an activation function and simulated annealing. Sequentially, the parametric expansion of fractional Laplace transform is employed to convert the governing fractional system into an ordinary differential system. Next, artificial neural network and simulated annealing approximate and optimize the attained system and produce accurate solutions. The predictability and elaboration of double scrolling chaotic structures of fractional-order Chua's system are also studied using the Lyapunov exponent and fifth–fourth Runge–Kutta method. Moreover, the mean absolute error and root mean square error are measured for the convergence analysis of the proposed scheme. On the whole, the accurate approximate solutions, the phase plots of Lyapunov exponent spectrum and bifurcation maps of the dynamical evolution of fractional Chua's system are a triumph of this endeavour.
doi_str_mv 10.1177/1461348418813015
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5ed73aad0d4243a69a96fac55d60fd8d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1461348418813015</sage_id><doaj_id>oai_doaj_org_article_5ed73aad0d4243a69a96fac55d60fd8d</doaj_id><sourcerecordid>2315213771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-ae17c543428b059ed41c50e3075918f34c992cd1c8d79303e9e412f14e32c5663</originalsourceid><addsrcrecordid>eNp1UU1vEzEQXSGQiErvHC1xXvD4Y717RBG0lVr1Us7WxB5nnW7jYjttc-Nv8Pf4JWwaRCUk5vKkmffejN40zXvgHwGM-QSqA6l6BX0PkoN-1SwEV32ruOpeN4vDuD3M3zanpWz4XFKYXnaLZn-T0d3G7ZrVkZgbMdXo2IpGfIhpl1kKLMyMGtMWpzZlT5ktxx3--vGzsLIvle7Yas-u6Ck63LIRK3vEB5qotiss5BnmGkN0ESe2pV1-hvqY8u275k3AqdDpHzxpvn39crM8by-vzy6Wny9bp8DUFgmM00oq0a-4HsgrcJqT5EYP0Aep3DAI58H13gySSxpIgQigSAqnu06eNBdHX59wY-9zvMO8twmjfW6kvLaHG91EVpM3EtFzr4SS2A04dAGd1r7jwfd-9vpw9LrP6fuOSrWbOaQ5mWKFBC1AGgMzix9ZLqdSMoW_W4Hbw7_sv_-aJe1RUnBNL6b_5f8GfPeV0A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315213771</pqid></control><display><type>article</type><title>Tracking the chaotic behaviour of fractional-order Chua’s system by Mexican hat wavelet-based artificial neural network</title><source>Publicly Available Content Database</source><source>Sage Journals GOLD Open Access 2024</source><creator>Khan, Najeeb A ; Hameed, Tooba ; Razzaq, Oyoon A ; Ayaz, Muhammad</creator><creatorcontrib>Khan, Najeeb A ; Hameed, Tooba ; Razzaq, Oyoon A ; Ayaz, Muhammad</creatorcontrib><description>In this paper, a process is devised systematically to scrutinize the scrolling chaotic behaviour of fractional-order Chua's system. The process is composed of fractional Laplace transformation, artificial neural network with Mexican hat wavelet as an activation function and simulated annealing. Sequentially, the parametric expansion of fractional Laplace transform is employed to convert the governing fractional system into an ordinary differential system. Next, artificial neural network and simulated annealing approximate and optimize the attained system and produce accurate solutions. The predictability and elaboration of double scrolling chaotic structures of fractional-order Chua's system are also studied using the Lyapunov exponent and fifth–fourth Runge–Kutta method. Moreover, the mean absolute error and root mean square error are measured for the convergence analysis of the proposed scheme. On the whole, the accurate approximate solutions, the phase plots of Lyapunov exponent spectrum and bifurcation maps of the dynamical evolution of fractional Chua's system are a triumph of this endeavour.</description><identifier>ISSN: 1461-3484</identifier><identifier>EISSN: 2048-4046</identifier><identifier>DOI: 10.1177/1461348418813015</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Artificial neural networks ; Bifurcations ; Chaos theory ; Computer simulation ; Error analysis ; Laplace transforms ; Neural networks ; Runge-Kutta method ; Scrolling ; Simulated annealing ; Simulation ; Wavelet analysis</subject><ispartof>Journal of low frequency noise, vibration, and active control, 2019-12, Vol.38 (3-4), p.1279-1296</ispartof><rights>The Author(s) 2018</rights><rights>The Author(s) 2018. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-ae17c543428b059ed41c50e3075918f34c992cd1c8d79303e9e412f14e32c5663</citedby><cites>FETCH-LOGICAL-c417t-ae17c543428b059ed41c50e3075918f34c992cd1c8d79303e9e412f14e32c5663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1461348418813015$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2315213771?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,21966,25753,27853,27924,27925,37012,44590,44945,45333</link.rule.ids></links><search><creatorcontrib>Khan, Najeeb A</creatorcontrib><creatorcontrib>Hameed, Tooba</creatorcontrib><creatorcontrib>Razzaq, Oyoon A</creatorcontrib><creatorcontrib>Ayaz, Muhammad</creatorcontrib><title>Tracking the chaotic behaviour of fractional-order Chua’s system by Mexican hat wavelet-based artificial neural network</title><title>Journal of low frequency noise, vibration, and active control</title><description>In this paper, a process is devised systematically to scrutinize the scrolling chaotic behaviour of fractional-order Chua's system. The process is composed of fractional Laplace transformation, artificial neural network with Mexican hat wavelet as an activation function and simulated annealing. Sequentially, the parametric expansion of fractional Laplace transform is employed to convert the governing fractional system into an ordinary differential system. Next, artificial neural network and simulated annealing approximate and optimize the attained system and produce accurate solutions. The predictability and elaboration of double scrolling chaotic structures of fractional-order Chua's system are also studied using the Lyapunov exponent and fifth–fourth Runge–Kutta method. Moreover, the mean absolute error and root mean square error are measured for the convergence analysis of the proposed scheme. On the whole, the accurate approximate solutions, the phase plots of Lyapunov exponent spectrum and bifurcation maps of the dynamical evolution of fractional Chua's system are a triumph of this endeavour.</description><subject>Artificial neural networks</subject><subject>Bifurcations</subject><subject>Chaos theory</subject><subject>Computer simulation</subject><subject>Error analysis</subject><subject>Laplace transforms</subject><subject>Neural networks</subject><subject>Runge-Kutta method</subject><subject>Scrolling</subject><subject>Simulated annealing</subject><subject>Simulation</subject><subject>Wavelet analysis</subject><issn>1461-3484</issn><issn>2048-4046</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1UU1vEzEQXSGQiErvHC1xXvD4Y717RBG0lVr1Us7WxB5nnW7jYjttc-Nv8Pf4JWwaRCUk5vKkmffejN40zXvgHwGM-QSqA6l6BX0PkoN-1SwEV32ruOpeN4vDuD3M3zanpWz4XFKYXnaLZn-T0d3G7ZrVkZgbMdXo2IpGfIhpl1kKLMyMGtMWpzZlT5ktxx3--vGzsLIvle7Yas-u6Ck63LIRK3vEB5qotiss5BnmGkN0ESe2pV1-hvqY8u275k3AqdDpHzxpvn39crM8by-vzy6Wny9bp8DUFgmM00oq0a-4HsgrcJqT5EYP0Aep3DAI58H13gySSxpIgQigSAqnu06eNBdHX59wY-9zvMO8twmjfW6kvLaHG91EVpM3EtFzr4SS2A04dAGd1r7jwfd-9vpw9LrP6fuOSrWbOaQ5mWKFBC1AGgMzix9ZLqdSMoW_W4Hbw7_sv_-aJe1RUnBNL6b_5f8GfPeV0A</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Khan, Najeeb A</creator><creator>Hameed, Tooba</creator><creator>Razzaq, Oyoon A</creator><creator>Ayaz, Muhammad</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><general>SAGE Publishing</general><scope>AFRWT</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>201912</creationdate><title>Tracking the chaotic behaviour of fractional-order Chua’s system by Mexican hat wavelet-based artificial neural network</title><author>Khan, Najeeb A ; Hameed, Tooba ; Razzaq, Oyoon A ; Ayaz, Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-ae17c543428b059ed41c50e3075918f34c992cd1c8d79303e9e412f14e32c5663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Bifurcations</topic><topic>Chaos theory</topic><topic>Computer simulation</topic><topic>Error analysis</topic><topic>Laplace transforms</topic><topic>Neural networks</topic><topic>Runge-Kutta method</topic><topic>Scrolling</topic><topic>Simulated annealing</topic><topic>Simulation</topic><topic>Wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Najeeb A</creatorcontrib><creatorcontrib>Hameed, Tooba</creatorcontrib><creatorcontrib>Razzaq, Oyoon A</creatorcontrib><creatorcontrib>Ayaz, Muhammad</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of low frequency noise, vibration, and active control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Najeeb A</au><au>Hameed, Tooba</au><au>Razzaq, Oyoon A</au><au>Ayaz, Muhammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracking the chaotic behaviour of fractional-order Chua’s system by Mexican hat wavelet-based artificial neural network</atitle><jtitle>Journal of low frequency noise, vibration, and active control</jtitle><date>2019-12</date><risdate>2019</risdate><volume>38</volume><issue>3-4</issue><spage>1279</spage><epage>1296</epage><pages>1279-1296</pages><issn>1461-3484</issn><eissn>2048-4046</eissn><abstract>In this paper, a process is devised systematically to scrutinize the scrolling chaotic behaviour of fractional-order Chua's system. The process is composed of fractional Laplace transformation, artificial neural network with Mexican hat wavelet as an activation function and simulated annealing. Sequentially, the parametric expansion of fractional Laplace transform is employed to convert the governing fractional system into an ordinary differential system. Next, artificial neural network and simulated annealing approximate and optimize the attained system and produce accurate solutions. The predictability and elaboration of double scrolling chaotic structures of fractional-order Chua's system are also studied using the Lyapunov exponent and fifth–fourth Runge–Kutta method. Moreover, the mean absolute error and root mean square error are measured for the convergence analysis of the proposed scheme. On the whole, the accurate approximate solutions, the phase plots of Lyapunov exponent spectrum and bifurcation maps of the dynamical evolution of fractional Chua's system are a triumph of this endeavour.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1461348418813015</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1461-3484
ispartof Journal of low frequency noise, vibration, and active control, 2019-12, Vol.38 (3-4), p.1279-1296
issn 1461-3484
2048-4046
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5ed73aad0d4243a69a96fac55d60fd8d
source Publicly Available Content Database; Sage Journals GOLD Open Access 2024
subjects Artificial neural networks
Bifurcations
Chaos theory
Computer simulation
Error analysis
Laplace transforms
Neural networks
Runge-Kutta method
Scrolling
Simulated annealing
Simulation
Wavelet analysis
title Tracking the chaotic behaviour of fractional-order Chua’s system by Mexican hat wavelet-based artificial neural network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A55%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracking%20the%20chaotic%20behaviour%20of%20fractional-order%20Chua%E2%80%99s%20system%20by%20Mexican%20hat%20wavelet-based%20artificial%20neural%20network&rft.jtitle=Journal%20of%20low%20frequency%20noise,%20vibration,%20and%20active%20control&rft.au=Khan,%20Najeeb%20A&rft.date=2019-12&rft.volume=38&rft.issue=3-4&rft.spage=1279&rft.epage=1296&rft.pages=1279-1296&rft.issn=1461-3484&rft.eissn=2048-4046&rft_id=info:doi/10.1177/1461348418813015&rft_dat=%3Cproquest_doaj_%3E2315213771%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c417t-ae17c543428b059ed41c50e3075918f34c992cd1c8d79303e9e412f14e32c5663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2315213771&rft_id=info:pmid/&rft_sage_id=10.1177_1461348418813015&rfr_iscdi=true