Loading…
Tracking the chaotic behaviour of fractional-order Chua’s system by Mexican hat wavelet-based artificial neural network
In this paper, a process is devised systematically to scrutinize the scrolling chaotic behaviour of fractional-order Chua's system. The process is composed of fractional Laplace transformation, artificial neural network with Mexican hat wavelet as an activation function and simulated annealing....
Saved in:
Published in: | Journal of low frequency noise, vibration, and active control vibration, and active control, 2019-12, Vol.38 (3-4), p.1279-1296 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c417t-ae17c543428b059ed41c50e3075918f34c992cd1c8d79303e9e412f14e32c5663 |
---|---|
cites | cdi_FETCH-LOGICAL-c417t-ae17c543428b059ed41c50e3075918f34c992cd1c8d79303e9e412f14e32c5663 |
container_end_page | 1296 |
container_issue | 3-4 |
container_start_page | 1279 |
container_title | Journal of low frequency noise, vibration, and active control |
container_volume | 38 |
creator | Khan, Najeeb A Hameed, Tooba Razzaq, Oyoon A Ayaz, Muhammad |
description | In this paper, a process is devised systematically to scrutinize the scrolling chaotic behaviour of fractional-order Chua's system. The process is composed of fractional Laplace transformation, artificial neural network with Mexican hat wavelet as an activation function and simulated annealing. Sequentially, the parametric expansion of fractional Laplace transform is employed to convert the governing fractional system into an ordinary differential system. Next, artificial neural network and simulated annealing approximate and optimize the attained system and produce accurate solutions. The predictability and elaboration of double scrolling chaotic structures of fractional-order Chua's system are also studied using the Lyapunov exponent and fifth–fourth Runge–Kutta method. Moreover, the mean absolute error and root mean square error are measured for the convergence analysis of the proposed scheme. On the whole, the accurate approximate solutions, the phase plots of Lyapunov exponent spectrum and bifurcation maps of the dynamical evolution of fractional Chua's system are a triumph of this endeavour. |
doi_str_mv | 10.1177/1461348418813015 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5ed73aad0d4243a69a96fac55d60fd8d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1461348418813015</sage_id><doaj_id>oai_doaj_org_article_5ed73aad0d4243a69a96fac55d60fd8d</doaj_id><sourcerecordid>2315213771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-ae17c543428b059ed41c50e3075918f34c992cd1c8d79303e9e412f14e32c5663</originalsourceid><addsrcrecordid>eNp1UU1vEzEQXSGQiErvHC1xXvD4Y717RBG0lVr1Us7WxB5nnW7jYjttc-Nv8Pf4JWwaRCUk5vKkmffejN40zXvgHwGM-QSqA6l6BX0PkoN-1SwEV32ruOpeN4vDuD3M3zanpWz4XFKYXnaLZn-T0d3G7ZrVkZgbMdXo2IpGfIhpl1kKLMyMGtMWpzZlT5ktxx3--vGzsLIvle7Yas-u6Ck63LIRK3vEB5qotiss5BnmGkN0ESe2pV1-hvqY8u275k3AqdDpHzxpvn39crM8by-vzy6Wny9bp8DUFgmM00oq0a-4HsgrcJqT5EYP0Aep3DAI58H13gySSxpIgQigSAqnu06eNBdHX59wY-9zvMO8twmjfW6kvLaHG91EVpM3EtFzr4SS2A04dAGd1r7jwfd-9vpw9LrP6fuOSrWbOaQ5mWKFBC1AGgMzix9ZLqdSMoW_W4Hbw7_sv_-aJe1RUnBNL6b_5f8GfPeV0A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315213771</pqid></control><display><type>article</type><title>Tracking the chaotic behaviour of fractional-order Chua’s system by Mexican hat wavelet-based artificial neural network</title><source>Publicly Available Content Database</source><source>Sage Journals GOLD Open Access 2024</source><creator>Khan, Najeeb A ; Hameed, Tooba ; Razzaq, Oyoon A ; Ayaz, Muhammad</creator><creatorcontrib>Khan, Najeeb A ; Hameed, Tooba ; Razzaq, Oyoon A ; Ayaz, Muhammad</creatorcontrib><description>In this paper, a process is devised systematically to scrutinize the scrolling chaotic behaviour of fractional-order Chua's system. The process is composed of fractional Laplace transformation, artificial neural network with Mexican hat wavelet as an activation function and simulated annealing. Sequentially, the parametric expansion of fractional Laplace transform is employed to convert the governing fractional system into an ordinary differential system. Next, artificial neural network and simulated annealing approximate and optimize the attained system and produce accurate solutions. The predictability and elaboration of double scrolling chaotic structures of fractional-order Chua's system are also studied using the Lyapunov exponent and fifth–fourth Runge–Kutta method. Moreover, the mean absolute error and root mean square error are measured for the convergence analysis of the proposed scheme. On the whole, the accurate approximate solutions, the phase plots of Lyapunov exponent spectrum and bifurcation maps of the dynamical evolution of fractional Chua's system are a triumph of this endeavour.</description><identifier>ISSN: 1461-3484</identifier><identifier>EISSN: 2048-4046</identifier><identifier>DOI: 10.1177/1461348418813015</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Artificial neural networks ; Bifurcations ; Chaos theory ; Computer simulation ; Error analysis ; Laplace transforms ; Neural networks ; Runge-Kutta method ; Scrolling ; Simulated annealing ; Simulation ; Wavelet analysis</subject><ispartof>Journal of low frequency noise, vibration, and active control, 2019-12, Vol.38 (3-4), p.1279-1296</ispartof><rights>The Author(s) 2018</rights><rights>The Author(s) 2018. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-ae17c543428b059ed41c50e3075918f34c992cd1c8d79303e9e412f14e32c5663</citedby><cites>FETCH-LOGICAL-c417t-ae17c543428b059ed41c50e3075918f34c992cd1c8d79303e9e412f14e32c5663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1461348418813015$$EPDF$$P50$$Gsage$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2315213771?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,21966,25753,27853,27924,27925,37012,44590,44945,45333</link.rule.ids></links><search><creatorcontrib>Khan, Najeeb A</creatorcontrib><creatorcontrib>Hameed, Tooba</creatorcontrib><creatorcontrib>Razzaq, Oyoon A</creatorcontrib><creatorcontrib>Ayaz, Muhammad</creatorcontrib><title>Tracking the chaotic behaviour of fractional-order Chua’s system by Mexican hat wavelet-based artificial neural network</title><title>Journal of low frequency noise, vibration, and active control</title><description>In this paper, a process is devised systematically to scrutinize the scrolling chaotic behaviour of fractional-order Chua's system. The process is composed of fractional Laplace transformation, artificial neural network with Mexican hat wavelet as an activation function and simulated annealing. Sequentially, the parametric expansion of fractional Laplace transform is employed to convert the governing fractional system into an ordinary differential system. Next, artificial neural network and simulated annealing approximate and optimize the attained system and produce accurate solutions. The predictability and elaboration of double scrolling chaotic structures of fractional-order Chua's system are also studied using the Lyapunov exponent and fifth–fourth Runge–Kutta method. Moreover, the mean absolute error and root mean square error are measured for the convergence analysis of the proposed scheme. On the whole, the accurate approximate solutions, the phase plots of Lyapunov exponent spectrum and bifurcation maps of the dynamical evolution of fractional Chua's system are a triumph of this endeavour.</description><subject>Artificial neural networks</subject><subject>Bifurcations</subject><subject>Chaos theory</subject><subject>Computer simulation</subject><subject>Error analysis</subject><subject>Laplace transforms</subject><subject>Neural networks</subject><subject>Runge-Kutta method</subject><subject>Scrolling</subject><subject>Simulated annealing</subject><subject>Simulation</subject><subject>Wavelet analysis</subject><issn>1461-3484</issn><issn>2048-4046</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1UU1vEzEQXSGQiErvHC1xXvD4Y717RBG0lVr1Us7WxB5nnW7jYjttc-Nv8Pf4JWwaRCUk5vKkmffejN40zXvgHwGM-QSqA6l6BX0PkoN-1SwEV32ruOpeN4vDuD3M3zanpWz4XFKYXnaLZn-T0d3G7ZrVkZgbMdXo2IpGfIhpl1kKLMyMGtMWpzZlT5ktxx3--vGzsLIvle7Yas-u6Ck63LIRK3vEB5qotiss5BnmGkN0ESe2pV1-hvqY8u275k3AqdDpHzxpvn39crM8by-vzy6Wny9bp8DUFgmM00oq0a-4HsgrcJqT5EYP0Aep3DAI58H13gySSxpIgQigSAqnu06eNBdHX59wY-9zvMO8twmjfW6kvLaHG91EVpM3EtFzr4SS2A04dAGd1r7jwfd-9vpw9LrP6fuOSrWbOaQ5mWKFBC1AGgMzix9ZLqdSMoW_W4Hbw7_sv_-aJe1RUnBNL6b_5f8GfPeV0A</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Khan, Najeeb A</creator><creator>Hameed, Tooba</creator><creator>Razzaq, Oyoon A</creator><creator>Ayaz, Muhammad</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><general>SAGE Publishing</general><scope>AFRWT</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>201912</creationdate><title>Tracking the chaotic behaviour of fractional-order Chua’s system by Mexican hat wavelet-based artificial neural network</title><author>Khan, Najeeb A ; Hameed, Tooba ; Razzaq, Oyoon A ; Ayaz, Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-ae17c543428b059ed41c50e3075918f34c992cd1c8d79303e9e412f14e32c5663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Bifurcations</topic><topic>Chaos theory</topic><topic>Computer simulation</topic><topic>Error analysis</topic><topic>Laplace transforms</topic><topic>Neural networks</topic><topic>Runge-Kutta method</topic><topic>Scrolling</topic><topic>Simulated annealing</topic><topic>Simulation</topic><topic>Wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Najeeb A</creatorcontrib><creatorcontrib>Hameed, Tooba</creatorcontrib><creatorcontrib>Razzaq, Oyoon A</creatorcontrib><creatorcontrib>Ayaz, Muhammad</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of low frequency noise, vibration, and active control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Najeeb A</au><au>Hameed, Tooba</au><au>Razzaq, Oyoon A</au><au>Ayaz, Muhammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracking the chaotic behaviour of fractional-order Chua’s system by Mexican hat wavelet-based artificial neural network</atitle><jtitle>Journal of low frequency noise, vibration, and active control</jtitle><date>2019-12</date><risdate>2019</risdate><volume>38</volume><issue>3-4</issue><spage>1279</spage><epage>1296</epage><pages>1279-1296</pages><issn>1461-3484</issn><eissn>2048-4046</eissn><abstract>In this paper, a process is devised systematically to scrutinize the scrolling chaotic behaviour of fractional-order Chua's system. The process is composed of fractional Laplace transformation, artificial neural network with Mexican hat wavelet as an activation function and simulated annealing. Sequentially, the parametric expansion of fractional Laplace transform is employed to convert the governing fractional system into an ordinary differential system. Next, artificial neural network and simulated annealing approximate and optimize the attained system and produce accurate solutions. The predictability and elaboration of double scrolling chaotic structures of fractional-order Chua's system are also studied using the Lyapunov exponent and fifth–fourth Runge–Kutta method. Moreover, the mean absolute error and root mean square error are measured for the convergence analysis of the proposed scheme. On the whole, the accurate approximate solutions, the phase plots of Lyapunov exponent spectrum and bifurcation maps of the dynamical evolution of fractional Chua's system are a triumph of this endeavour.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1461348418813015</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1461-3484 |
ispartof | Journal of low frequency noise, vibration, and active control, 2019-12, Vol.38 (3-4), p.1279-1296 |
issn | 1461-3484 2048-4046 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5ed73aad0d4243a69a96fac55d60fd8d |
source | Publicly Available Content Database; Sage Journals GOLD Open Access 2024 |
subjects | Artificial neural networks Bifurcations Chaos theory Computer simulation Error analysis Laplace transforms Neural networks Runge-Kutta method Scrolling Simulated annealing Simulation Wavelet analysis |
title | Tracking the chaotic behaviour of fractional-order Chua’s system by Mexican hat wavelet-based artificial neural network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A55%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracking%20the%20chaotic%20behaviour%20of%20fractional-order%20Chua%E2%80%99s%20system%20by%20Mexican%20hat%20wavelet-based%20artificial%20neural%20network&rft.jtitle=Journal%20of%20low%20frequency%20noise,%20vibration,%20and%20active%20control&rft.au=Khan,%20Najeeb%20A&rft.date=2019-12&rft.volume=38&rft.issue=3-4&rft.spage=1279&rft.epage=1296&rft.pages=1279-1296&rft.issn=1461-3484&rft.eissn=2048-4046&rft_id=info:doi/10.1177/1461348418813015&rft_dat=%3Cproquest_doaj_%3E2315213771%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c417t-ae17c543428b059ed41c50e3075918f34c992cd1c8d79303e9e412f14e32c5663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2315213771&rft_id=info:pmid/&rft_sage_id=10.1177_1461348418813015&rfr_iscdi=true |