Loading…

Composite Material Elastic Effective Coefficients Optimization by Means of a Micromechanical Mechanical Model

The presented research work demonstrates an efficient methodology based on a micromechanical framework for the prediction of the effective elastic properties of strongly bonded long-fiber-reinforced materials (CFRP) used for the construction of tubular structures. Although numerous analytical and nu...

Full description

Saved in:
Bibliographic Details
Published in:Applied Mechanics 2022-09, Vol.3 (3), p.779-798
Main Authors: Zyganitidis, Ioannis, Arailopoulos, Alexandros, Giagopoulos, Dimitrios
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c376t-95deb2d940f76ddc340f7fc3a9285c687afb1e845f57fe7fe23e5fcf726f85933
cites cdi_FETCH-LOGICAL-c376t-95deb2d940f76ddc340f7fc3a9285c687afb1e845f57fe7fe23e5fcf726f85933
container_end_page 798
container_issue 3
container_start_page 779
container_title Applied Mechanics
container_volume 3
creator Zyganitidis, Ioannis
Arailopoulos, Alexandros
Giagopoulos, Dimitrios
description The presented research work demonstrates an efficient methodology based on a micromechanical framework for the prediction of the effective elastic properties of strongly bonded long-fiber-reinforced materials (CFRP) used for the construction of tubular structures. Although numerous analytical and numerical micromechanical models have been developed to predict the mechanical response of CFRPs, either they cannot accurately predict complex mechanical responses due to limits on the input parameters or they are resource intensive. The generalized method of cells (GMC) is capable of assessing more detailed strain fields in the vicinity of fiber–matrix interfaces since it allows for a plethora of material and structural parameters to be defined while being computationally effective. The GMC homogenization approach is successfully combined with the covariance matrix adaptation evolution strategy (CMA–ES) to identify the effective elasticity tensor Cij of CFRP materials. The accuracy and efficiency of the proposed methodology are validated by comparing predicted effective properties with previously measured experimental data on CFRP cylindrical samples made of 3501-6 epoxy matrix reinforced with AS4 carbon fibers. The proposed and validated method can be successively used in both analyzing the mechanical responses of structures and designing new optimized composite materials.
doi_str_mv 10.3390/applmech3030046
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5ee415b35d3e4f5f8acac00a0b0d2461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5ee415b35d3e4f5f8acac00a0b0d2461</doaj_id><sourcerecordid>2716486607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-95deb2d940f76ddc340f7fc3a9285c687afb1e845f57fe7fe23e5fcf726f85933</originalsourceid><addsrcrecordid>eNpdUU1LxDAQLaKgqGevAc_VtGnS9ihl_YAte9FzmKYzmqVtahIF_fV2XRERBuYxPN68mZckFxm_EqLm1zDPw4jmRXDBeaEOkpNclSIVmcoO_-Dj5DyELec8r6SqVHWSjI0bZxdsRNZCRG9hYKsBQrSGrYjQRPuOrHFIZI3FKQa2maMd7SdE6ybWfbAWYQrMEQPWWuPdzgdM1ixK7R_oehzOkiOCIeD5Tz9Nnm5Xj819ut7cPTQ369SIUsW0lj12eV8XnErV90bsABkB9eLbqKoE6jKsCkmyJFwqFyjJUJkrqmQtxGnysNftHWz17O0I_kM7sPp74PyzBr-cOKCWiEUmOyF7gQVJqsCA4Rx4x_u8UNmidbnXmr17fcMQ9da9-Wmxr_MyU0WlFC8X1vWetTwgBI_0uzXjeheR_heR-AKoaIdB</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716486607</pqid></control><display><type>article</type><title>Composite Material Elastic Effective Coefficients Optimization by Means of a Micromechanical Mechanical Model</title><source>Publicly Available Content Database</source><creator>Zyganitidis, Ioannis ; Arailopoulos, Alexandros ; Giagopoulos, Dimitrios</creator><creatorcontrib>Zyganitidis, Ioannis ; Arailopoulos, Alexandros ; Giagopoulos, Dimitrios</creatorcontrib><description>The presented research work demonstrates an efficient methodology based on a micromechanical framework for the prediction of the effective elastic properties of strongly bonded long-fiber-reinforced materials (CFRP) used for the construction of tubular structures. Although numerous analytical and numerical micromechanical models have been developed to predict the mechanical response of CFRPs, either they cannot accurately predict complex mechanical responses due to limits on the input parameters or they are resource intensive. The generalized method of cells (GMC) is capable of assessing more detailed strain fields in the vicinity of fiber–matrix interfaces since it allows for a plethora of material and structural parameters to be defined while being computationally effective. The GMC homogenization approach is successfully combined with the covariance matrix adaptation evolution strategy (CMA–ES) to identify the effective elasticity tensor Cij of CFRP materials. The accuracy and efficiency of the proposed methodology are validated by comparing predicted effective properties with previously measured experimental data on CFRP cylindrical samples made of 3501-6 epoxy matrix reinforced with AS4 carbon fibers. The proposed and validated method can be successively used in both analyzing the mechanical responses of structures and designing new optimized composite materials.</description><identifier>ISSN: 2673-3161</identifier><identifier>EISSN: 2673-3161</identifier><identifier>DOI: 10.3390/applmech3030046</identifier><language>eng</language><publisher>Zwijnaarde: MDPI AG</publisher><subject>Approximation ; carbon fiber reinforced plastics cylinders ; Carbon fibers ; Composite materials ; covariance matrix adaptation evolution strategy ; Engineering ; generalized method of cells ; Methods ; micromechanics ; optimization ; Optimization algorithms</subject><ispartof>Applied Mechanics, 2022-09, Vol.3 (3), p.779-798</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-95deb2d940f76ddc340f7fc3a9285c687afb1e845f57fe7fe23e5fcf726f85933</citedby><cites>FETCH-LOGICAL-c376t-95deb2d940f76ddc340f7fc3a9285c687afb1e845f57fe7fe23e5fcf726f85933</cites><orcidid>0000-0003-2847-4235 ; 0000-0002-1044-7485</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2716486607/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2716486607?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Zyganitidis, Ioannis</creatorcontrib><creatorcontrib>Arailopoulos, Alexandros</creatorcontrib><creatorcontrib>Giagopoulos, Dimitrios</creatorcontrib><title>Composite Material Elastic Effective Coefficients Optimization by Means of a Micromechanical Mechanical Model</title><title>Applied Mechanics</title><description>The presented research work demonstrates an efficient methodology based on a micromechanical framework for the prediction of the effective elastic properties of strongly bonded long-fiber-reinforced materials (CFRP) used for the construction of tubular structures. Although numerous analytical and numerical micromechanical models have been developed to predict the mechanical response of CFRPs, either they cannot accurately predict complex mechanical responses due to limits on the input parameters or they are resource intensive. The generalized method of cells (GMC) is capable of assessing more detailed strain fields in the vicinity of fiber–matrix interfaces since it allows for a plethora of material and structural parameters to be defined while being computationally effective. The GMC homogenization approach is successfully combined with the covariance matrix adaptation evolution strategy (CMA–ES) to identify the effective elasticity tensor Cij of CFRP materials. The accuracy and efficiency of the proposed methodology are validated by comparing predicted effective properties with previously measured experimental data on CFRP cylindrical samples made of 3501-6 epoxy matrix reinforced with AS4 carbon fibers. The proposed and validated method can be successively used in both analyzing the mechanical responses of structures and designing new optimized composite materials.</description><subject>Approximation</subject><subject>carbon fiber reinforced plastics cylinders</subject><subject>Carbon fibers</subject><subject>Composite materials</subject><subject>covariance matrix adaptation evolution strategy</subject><subject>Engineering</subject><subject>generalized method of cells</subject><subject>Methods</subject><subject>micromechanics</subject><subject>optimization</subject><subject>Optimization algorithms</subject><issn>2673-3161</issn><issn>2673-3161</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUU1LxDAQLaKgqGevAc_VtGnS9ihl_YAte9FzmKYzmqVtahIF_fV2XRERBuYxPN68mZckFxm_EqLm1zDPw4jmRXDBeaEOkpNclSIVmcoO_-Dj5DyELec8r6SqVHWSjI0bZxdsRNZCRG9hYKsBQrSGrYjQRPuOrHFIZI3FKQa2maMd7SdE6ybWfbAWYQrMEQPWWuPdzgdM1ixK7R_oehzOkiOCIeD5Tz9Nnm5Xj819ut7cPTQ369SIUsW0lj12eV8XnErV90bsABkB9eLbqKoE6jKsCkmyJFwqFyjJUJkrqmQtxGnysNftHWz17O0I_kM7sPp74PyzBr-cOKCWiEUmOyF7gQVJqsCA4Rx4x_u8UNmidbnXmr17fcMQ9da9-Wmxr_MyU0WlFC8X1vWetTwgBI_0uzXjeheR_heR-AKoaIdB</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Zyganitidis, Ioannis</creator><creator>Arailopoulos, Alexandros</creator><creator>Giagopoulos, Dimitrios</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2847-4235</orcidid><orcidid>https://orcid.org/0000-0002-1044-7485</orcidid></search><sort><creationdate>20220901</creationdate><title>Composite Material Elastic Effective Coefficients Optimization by Means of a Micromechanical Mechanical Model</title><author>Zyganitidis, Ioannis ; Arailopoulos, Alexandros ; Giagopoulos, Dimitrios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-95deb2d940f76ddc340f7fc3a9285c687afb1e845f57fe7fe23e5fcf726f85933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Approximation</topic><topic>carbon fiber reinforced plastics cylinders</topic><topic>Carbon fibers</topic><topic>Composite materials</topic><topic>covariance matrix adaptation evolution strategy</topic><topic>Engineering</topic><topic>generalized method of cells</topic><topic>Methods</topic><topic>micromechanics</topic><topic>optimization</topic><topic>Optimization algorithms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zyganitidis, Ioannis</creatorcontrib><creatorcontrib>Arailopoulos, Alexandros</creatorcontrib><creatorcontrib>Giagopoulos, Dimitrios</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied Mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zyganitidis, Ioannis</au><au>Arailopoulos, Alexandros</au><au>Giagopoulos, Dimitrios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composite Material Elastic Effective Coefficients Optimization by Means of a Micromechanical Mechanical Model</atitle><jtitle>Applied Mechanics</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>3</volume><issue>3</issue><spage>779</spage><epage>798</epage><pages>779-798</pages><issn>2673-3161</issn><eissn>2673-3161</eissn><abstract>The presented research work demonstrates an efficient methodology based on a micromechanical framework for the prediction of the effective elastic properties of strongly bonded long-fiber-reinforced materials (CFRP) used for the construction of tubular structures. Although numerous analytical and numerical micromechanical models have been developed to predict the mechanical response of CFRPs, either they cannot accurately predict complex mechanical responses due to limits on the input parameters or they are resource intensive. The generalized method of cells (GMC) is capable of assessing more detailed strain fields in the vicinity of fiber–matrix interfaces since it allows for a plethora of material and structural parameters to be defined while being computationally effective. The GMC homogenization approach is successfully combined with the covariance matrix adaptation evolution strategy (CMA–ES) to identify the effective elasticity tensor Cij of CFRP materials. The accuracy and efficiency of the proposed methodology are validated by comparing predicted effective properties with previously measured experimental data on CFRP cylindrical samples made of 3501-6 epoxy matrix reinforced with AS4 carbon fibers. The proposed and validated method can be successively used in both analyzing the mechanical responses of structures and designing new optimized composite materials.</abstract><cop>Zwijnaarde</cop><pub>MDPI AG</pub><doi>10.3390/applmech3030046</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-2847-4235</orcidid><orcidid>https://orcid.org/0000-0002-1044-7485</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2673-3161
ispartof Applied Mechanics, 2022-09, Vol.3 (3), p.779-798
issn 2673-3161
2673-3161
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5ee415b35d3e4f5f8acac00a0b0d2461
source Publicly Available Content Database
subjects Approximation
carbon fiber reinforced plastics cylinders
Carbon fibers
Composite materials
covariance matrix adaptation evolution strategy
Engineering
generalized method of cells
Methods
micromechanics
optimization
Optimization algorithms
title Composite Material Elastic Effective Coefficients Optimization by Means of a Micromechanical Mechanical Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A39%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composite%20Material%20Elastic%20Effective%20Coefficients%20Optimization%20by%20Means%20of%20a%20Micromechanical%20Mechanical%20Model&rft.jtitle=Applied%20Mechanics&rft.au=Zyganitidis,%20Ioannis&rft.date=2022-09-01&rft.volume=3&rft.issue=3&rft.spage=779&rft.epage=798&rft.pages=779-798&rft.issn=2673-3161&rft.eissn=2673-3161&rft_id=info:doi/10.3390/applmech3030046&rft_dat=%3Cproquest_doaj_%3E2716486607%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c376t-95deb2d940f76ddc340f7fc3a9285c687afb1e845f57fe7fe23e5fcf726f85933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2716486607&rft_id=info:pmid/&rfr_iscdi=true