Loading…
Ultrasonic Transducer Fabricated Using Lead-Free BFO-BTO+Mn Piezoelectric 1-3 Composite
Mn-doped 0.7BiFeO3-0.3BaTiO3 (BFO-0.3BTO+Mn 1% mol) lead-free piezoelectric ceramic were fabricated by traditional solid state reaction. The phase structure, microstructure, and ferroelectric properties were investigated. Additionally, lead-free 1-3 composites with 60% volume fraction of BFO-BTO+Mn...
Saved in:
Published in: | Actuators 2015-06, Vol.4 (2), p.127-134 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mn-doped 0.7BiFeO3-0.3BaTiO3 (BFO-0.3BTO+Mn 1% mol) lead-free piezoelectric ceramic were fabricated by traditional solid state reaction. The phase structure, microstructure, and ferroelectric properties were investigated. Additionally, lead-free 1-3 composites with 60% volume fraction of BFO-BTO+Mn ceramic were fabricated for ultrasonic transducer applications by a conventional dice-and-fill method. The BFO-BTO+Mn 1-3 composite has a higher electromechanical coupling coefficient (kt = 46.4%) and lower acoustic impedance (Za ~ 18 MRayls) compared with that of the ceramic. Based on this, lead-free piezoelectric ceramic composite, single element ultrasonic transducer with a center frequency of 2.54 MHz has been fabricated and characterized. The single element transducer exhibits good performance with a broad bandwidth of 53%. The insertion loss of the transducer was about 33.5 dB. |
---|---|
ISSN: | 2076-0825 2076-0825 |
DOI: | 10.3390/act4020127 |