Loading…

Epigenetic and metabolic programming of innate immunity in sepsis

Sepsis, the 10th leading cause of death, is the most expensive condition in the United States. The immune response in sepsis transitions from hyperinflammatory to a hypoinflammatory and immunosuppressive phase; individual variations regarding timing and overlap between hyper- and hypoinflammation ex...

Full description

Saved in:
Bibliographic Details
Published in:Innate Immunity 2019-07, Vol.25 (5), p.267-279
Main Authors: Vachharajani, Vidula, McCall, Charles E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sepsis, the 10th leading cause of death, is the most expensive condition in the United States. The immune response in sepsis transitions from hyperinflammatory to a hypoinflammatory and immunosuppressive phase; individual variations regarding timing and overlap between hyper- and hypoinflammation exist in a number of patients. While one third of the sepsis-related deaths occur during hyperinflammation, majority of the sepsis-mortality occurs during the hypoinflammatory phase. Currently, no phase-specific molecular-based therapies exist to treat sepsis. Coordinated epigenetic and metabolic perturbations orchestrate this shift from hyper- to hypoinflammation in innate immune cells during sepsis. These epigenetic and metabolic changes during sepsis progression and therapeutic opportunities they pose are described in this review.
ISSN:1753-4259
1753-4267
DOI:10.1177/1753425919842320