Loading…
CO2 Absorption and Magnesium Carbonate Precipitation in MgCl2–NH3–NH4Cl Solutions: Implications for Carbon Capture and Storage
CO2 absorption and carbonate precipitation are the two core processes controlling the reaction rate and path of CO2 mineral sequestration. Whereas previous studies have focused on testing reactive crystallization and precipitation kinetics, much less attention has been paid to absorption, the key pr...
Saved in:
Published in: | Minerals (Basel) 2017-09, Vol.7 (9), p.172 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c388t-25caee6d6ec3c3c0e0b9b8785b4137a1809ed8a3459b576e1022415116e18e2c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c388t-25caee6d6ec3c3c0e0b9b8785b4137a1809ed8a3459b576e1022415116e18e2c3 |
container_end_page | |
container_issue | 9 |
container_start_page | 172 |
container_title | Minerals (Basel) |
container_volume | 7 |
creator | Zhu, Chen Wang, Han Li, Gen An, Siyu Ding, Xiaofeng Teng, Hui Zhao, Liang |
description | CO2 absorption and carbonate precipitation are the two core processes controlling the reaction rate and path of CO2 mineral sequestration. Whereas previous studies have focused on testing reactive crystallization and precipitation kinetics, much less attention has been paid to absorption, the key process determining the removal efficiency of CO2. In this study, adopting a novel wetted wall column reactor, we systematically explore the rates and mechanisms of carbon transformation from CO2 gas to carbonates in MgCl2-NH3-NH4Cl solutions. We find that reactive diffusion in liquid film of the wetted wall column is the rate-limiting step of CO2 absorption when proceeding chiefly through interactions between CO2(aq) and NH3(aq). We further quantified the reaction kinetic constant of the CO2-NH3 reaction. Our results indicate that higher initial concentration of NH4Cl ( ≥2mol⋅L−1≥2mol•L−1 ) leads to the precipitation of roguinite [ (NH4)2Mg(CO3)2⋅4H2O(NH4)2Mg(CO3)2•4H2O ], while nesquehonite appears to be the dominant Mg-carbonate without NH4Cl addition. We also noticed dypingite formation via phase transformation in hot water. This study provides new insight into the reaction kinetics of CO2 mineral carbonation that indicates the potential of this technique for future application to industrial-scale CO2 sequestration. |
doi_str_mv | 10.3390/min7090172 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5f1608183f2e4cb88b0eecea5d0e20cc</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5f1608183f2e4cb88b0eecea5d0e20cc</doaj_id><sourcerecordid>1952086715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-25caee6d6ec3c3c0e0b9b8785b4137a1809ed8a3459b576e1022415116e18e2c3</originalsourceid><addsrcrecordid>eNpNkc1q3DAQx01JICHNpU8g2lthU31YtpTbYpLswm43kBRyE7I83mrxSq4kH3ILfYW-YZ-kXm9IMwMzw8yPvzRMln0i-Ioxib_trSuxxKSkH7Jziks-IwV7OnlXn2WXMe7waJIwwel59rvaUDSvow99st4h7Rq01lsH0Q57VOlQe6cToPsAxvY26YmyDq23VUf_vvz5vmBTzKsOPfhuOMzjNVru-86aiY6o9eFVakx9GgJM7zwkH_QWPmanre4iXL7mi-zH7c1jtZitNnfLar6aGSZEmlFuNEDRFGDY6BhwLWtRCl7nhJWaCCyhEZrlXNa8LIBgSnPCCRlLAdSwi2x51G283qk-2L0Oz8prq6aGD1ulQ7KmA8VbUmBBBGsp5KYWosYABjRvMFBsDlqfj1o-JquisQnMT-OdA5MUyamkMh-hL0eoD_7XADGpnR-CG3dURHKKRVESPlJfj5QJPsYA7dvXCFaHu6r_d2X_ACHKllE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1952086715</pqid></control><display><type>article</type><title>CO2 Absorption and Magnesium Carbonate Precipitation in MgCl2–NH3–NH4Cl Solutions: Implications for Carbon Capture and Storage</title><source>Publicly Available Content Database</source><source>ABI/INFORM Global</source><creator>Zhu, Chen ; Wang, Han ; Li, Gen ; An, Siyu ; Ding, Xiaofeng ; Teng, Hui ; Zhao, Liang</creator><creatorcontrib>Zhu, Chen ; Wang, Han ; Li, Gen ; An, Siyu ; Ding, Xiaofeng ; Teng, Hui ; Zhao, Liang ; George Washington Univ., Washington, DC (United States)</creatorcontrib><description>CO2 absorption and carbonate precipitation are the two core processes controlling the reaction rate and path of CO2 mineral sequestration. Whereas previous studies have focused on testing reactive crystallization and precipitation kinetics, much less attention has been paid to absorption, the key process determining the removal efficiency of CO2. In this study, adopting a novel wetted wall column reactor, we systematically explore the rates and mechanisms of carbon transformation from CO2 gas to carbonates in MgCl2-NH3-NH4Cl solutions. We find that reactive diffusion in liquid film of the wetted wall column is the rate-limiting step of CO2 absorption when proceeding chiefly through interactions between CO2(aq) and NH3(aq). We further quantified the reaction kinetic constant of the CO2-NH3 reaction. Our results indicate that higher initial concentration of NH4Cl ( ≥2mol⋅L−1≥2mol•L−1 ) leads to the precipitation of roguinite [ (NH4)2Mg(CO3)2⋅4H2O(NH4)2Mg(CO3)2•4H2O ], while nesquehonite appears to be the dominant Mg-carbonate without NH4Cl addition. We also noticed dypingite formation via phase transformation in hot water. This study provides new insight into the reaction kinetics of CO2 mineral carbonation that indicates the potential of this technique for future application to industrial-scale CO2 sequestration.</description><identifier>ISSN: 2075-163X</identifier><identifier>EISSN: 2075-163X</identifier><identifier>DOI: 10.3390/min7090172</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Absorption ; absorption rate ; Ammonia ; Ammonium chloride ; Carbon capture and storage ; Carbon dioxide ; Carbon dioxide fixation ; Carbon sequestration ; Carbonates ; Carbonation ; Chemical precipitation ; Crystallization ; Diffusion rate ; Dye dispersion ; GEOSCIENCES ; Hot water ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Interactions ; Kinetics ; Magnesium ; Magnesium carbonate ; Magnesium chloride ; Microprocessors ; Phase transitions ; Reaction kinetics ; Removal ; Solutions ; Storage ; Wetted wall columns</subject><ispartof>Minerals (Basel), 2017-09, Vol.7 (9), p.172</ispartof><rights>Copyright MDPI AG 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-25caee6d6ec3c3c0e0b9b8785b4137a1809ed8a3459b576e1022415116e18e2c3</citedby><cites>FETCH-LOGICAL-c388t-25caee6d6ec3c3c0e0b9b8785b4137a1809ed8a3459b576e1022415116e18e2c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1952086715/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1952086715?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,11686,25751,27922,27923,36058,37010,44361,44588,74665,74896</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1429294$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Chen</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Li, Gen</creatorcontrib><creatorcontrib>An, Siyu</creatorcontrib><creatorcontrib>Ding, Xiaofeng</creatorcontrib><creatorcontrib>Teng, Hui</creatorcontrib><creatorcontrib>Zhao, Liang</creatorcontrib><creatorcontrib>George Washington Univ., Washington, DC (United States)</creatorcontrib><title>CO2 Absorption and Magnesium Carbonate Precipitation in MgCl2–NH3–NH4Cl Solutions: Implications for Carbon Capture and Storage</title><title>Minerals (Basel)</title><description>CO2 absorption and carbonate precipitation are the two core processes controlling the reaction rate and path of CO2 mineral sequestration. Whereas previous studies have focused on testing reactive crystallization and precipitation kinetics, much less attention has been paid to absorption, the key process determining the removal efficiency of CO2. In this study, adopting a novel wetted wall column reactor, we systematically explore the rates and mechanisms of carbon transformation from CO2 gas to carbonates in MgCl2-NH3-NH4Cl solutions. We find that reactive diffusion in liquid film of the wetted wall column is the rate-limiting step of CO2 absorption when proceeding chiefly through interactions between CO2(aq) and NH3(aq). We further quantified the reaction kinetic constant of the CO2-NH3 reaction. Our results indicate that higher initial concentration of NH4Cl ( ≥2mol⋅L−1≥2mol•L−1 ) leads to the precipitation of roguinite [ (NH4)2Mg(CO3)2⋅4H2O(NH4)2Mg(CO3)2•4H2O ], while nesquehonite appears to be the dominant Mg-carbonate without NH4Cl addition. We also noticed dypingite formation via phase transformation in hot water. This study provides new insight into the reaction kinetics of CO2 mineral carbonation that indicates the potential of this technique for future application to industrial-scale CO2 sequestration.</description><subject>Absorption</subject><subject>absorption rate</subject><subject>Ammonia</subject><subject>Ammonium chloride</subject><subject>Carbon capture and storage</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide fixation</subject><subject>Carbon sequestration</subject><subject>Carbonates</subject><subject>Carbonation</subject><subject>Chemical precipitation</subject><subject>Crystallization</subject><subject>Diffusion rate</subject><subject>Dye dispersion</subject><subject>GEOSCIENCES</subject><subject>Hot water</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Interactions</subject><subject>Kinetics</subject><subject>Magnesium</subject><subject>Magnesium carbonate</subject><subject>Magnesium chloride</subject><subject>Microprocessors</subject><subject>Phase transitions</subject><subject>Reaction kinetics</subject><subject>Removal</subject><subject>Solutions</subject><subject>Storage</subject><subject>Wetted wall columns</subject><issn>2075-163X</issn><issn>2075-163X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkc1q3DAQx01JICHNpU8g2lthU31YtpTbYpLswm43kBRyE7I83mrxSq4kH3ILfYW-YZ-kXm9IMwMzw8yPvzRMln0i-Ioxib_trSuxxKSkH7Jziks-IwV7OnlXn2WXMe7waJIwwel59rvaUDSvow99st4h7Rq01lsH0Q57VOlQe6cToPsAxvY26YmyDq23VUf_vvz5vmBTzKsOPfhuOMzjNVru-86aiY6o9eFVakx9GgJM7zwkH_QWPmanre4iXL7mi-zH7c1jtZitNnfLar6aGSZEmlFuNEDRFGDY6BhwLWtRCl7nhJWaCCyhEZrlXNa8LIBgSnPCCRlLAdSwi2x51G283qk-2L0Oz8prq6aGD1ulQ7KmA8VbUmBBBGsp5KYWosYABjRvMFBsDlqfj1o-JquisQnMT-OdA5MUyamkMh-hL0eoD_7XADGpnR-CG3dURHKKRVESPlJfj5QJPsYA7dvXCFaHu6r_d2X_ACHKllE</recordid><startdate>20170919</startdate><enddate>20170919</enddate><creator>Zhu, Chen</creator><creator>Wang, Han</creator><creator>Li, Gen</creator><creator>An, Siyu</creator><creator>Ding, Xiaofeng</creator><creator>Teng, Hui</creator><creator>Zhao, Liang</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>M0C</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>DOA</scope></search><sort><creationdate>20170919</creationdate><title>CO2 Absorption and Magnesium Carbonate Precipitation in MgCl2–NH3–NH4Cl Solutions: Implications for Carbon Capture and Storage</title><author>Zhu, Chen ; Wang, Han ; Li, Gen ; An, Siyu ; Ding, Xiaofeng ; Teng, Hui ; Zhao, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-25caee6d6ec3c3c0e0b9b8785b4137a1809ed8a3459b576e1022415116e18e2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Absorption</topic><topic>absorption rate</topic><topic>Ammonia</topic><topic>Ammonium chloride</topic><topic>Carbon capture and storage</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide fixation</topic><topic>Carbon sequestration</topic><topic>Carbonates</topic><topic>Carbonation</topic><topic>Chemical precipitation</topic><topic>Crystallization</topic><topic>Diffusion rate</topic><topic>Dye dispersion</topic><topic>GEOSCIENCES</topic><topic>Hot water</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Interactions</topic><topic>Kinetics</topic><topic>Magnesium</topic><topic>Magnesium carbonate</topic><topic>Magnesium chloride</topic><topic>Microprocessors</topic><topic>Phase transitions</topic><topic>Reaction kinetics</topic><topic>Removal</topic><topic>Solutions</topic><topic>Storage</topic><topic>Wetted wall columns</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Chen</creatorcontrib><creatorcontrib>Wang, Han</creatorcontrib><creatorcontrib>Li, Gen</creatorcontrib><creatorcontrib>An, Siyu</creatorcontrib><creatorcontrib>Ding, Xiaofeng</creatorcontrib><creatorcontrib>Teng, Hui</creatorcontrib><creatorcontrib>Zhao, Liang</creatorcontrib><creatorcontrib>George Washington Univ., Washington, DC (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ABI/INFORM Global</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Minerals (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Chen</au><au>Wang, Han</au><au>Li, Gen</au><au>An, Siyu</au><au>Ding, Xiaofeng</au><au>Teng, Hui</au><au>Zhao, Liang</au><aucorp>George Washington Univ., Washington, DC (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CO2 Absorption and Magnesium Carbonate Precipitation in MgCl2–NH3–NH4Cl Solutions: Implications for Carbon Capture and Storage</atitle><jtitle>Minerals (Basel)</jtitle><date>2017-09-19</date><risdate>2017</risdate><volume>7</volume><issue>9</issue><spage>172</spage><pages>172-</pages><issn>2075-163X</issn><eissn>2075-163X</eissn><abstract>CO2 absorption and carbonate precipitation are the two core processes controlling the reaction rate and path of CO2 mineral sequestration. Whereas previous studies have focused on testing reactive crystallization and precipitation kinetics, much less attention has been paid to absorption, the key process determining the removal efficiency of CO2. In this study, adopting a novel wetted wall column reactor, we systematically explore the rates and mechanisms of carbon transformation from CO2 gas to carbonates in MgCl2-NH3-NH4Cl solutions. We find that reactive diffusion in liquid film of the wetted wall column is the rate-limiting step of CO2 absorption when proceeding chiefly through interactions between CO2(aq) and NH3(aq). We further quantified the reaction kinetic constant of the CO2-NH3 reaction. Our results indicate that higher initial concentration of NH4Cl ( ≥2mol⋅L−1≥2mol•L−1 ) leads to the precipitation of roguinite [ (NH4)2Mg(CO3)2⋅4H2O(NH4)2Mg(CO3)2•4H2O ], while nesquehonite appears to be the dominant Mg-carbonate without NH4Cl addition. We also noticed dypingite formation via phase transformation in hot water. This study provides new insight into the reaction kinetics of CO2 mineral carbonation that indicates the potential of this technique for future application to industrial-scale CO2 sequestration.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/min7090172</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-163X |
ispartof | Minerals (Basel), 2017-09, Vol.7 (9), p.172 |
issn | 2075-163X 2075-163X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5f1608183f2e4cb88b0eecea5d0e20cc |
source | Publicly Available Content Database; ABI/INFORM Global |
subjects | Absorption absorption rate Ammonia Ammonium chloride Carbon capture and storage Carbon dioxide Carbon dioxide fixation Carbon sequestration Carbonates Carbonation Chemical precipitation Crystallization Diffusion rate Dye dispersion GEOSCIENCES Hot water INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Interactions Kinetics Magnesium Magnesium carbonate Magnesium chloride Microprocessors Phase transitions Reaction kinetics Removal Solutions Storage Wetted wall columns |
title | CO2 Absorption and Magnesium Carbonate Precipitation in MgCl2–NH3–NH4Cl Solutions: Implications for Carbon Capture and Storage |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A38%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CO2%20Absorption%20and%20Magnesium%20Carbonate%20Precipitation%20in%20MgCl2%E2%80%93NH3%E2%80%93NH4Cl%20Solutions:%20Implications%20for%20Carbon%20Capture%20and%20Storage&rft.jtitle=Minerals%20(Basel)&rft.au=Zhu,%20Chen&rft.aucorp=George%20Washington%20Univ.,%20Washington,%20DC%20(United%20States)&rft.date=2017-09-19&rft.volume=7&rft.issue=9&rft.spage=172&rft.pages=172-&rft.issn=2075-163X&rft.eissn=2075-163X&rft_id=info:doi/10.3390/min7090172&rft_dat=%3Cproquest_doaj_%3E1952086715%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-25caee6d6ec3c3c0e0b9b8785b4137a1809ed8a3459b576e1022415116e18e2c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1952086715&rft_id=info:pmid/&rfr_iscdi=true |