Loading…

Polynomial representations of classical Lie algebras and flag varieties

Recently we have started a program to describe the action of Lie algebras associated with Dynkin-type diagrams on generic Verma modules in terms of polynomial vector fields. In this paper we explain that the results for the classical ABCD series of Lie algebras coincide with the more conventional ap...

Full description

Saved in:
Bibliographic Details
Published in:Physics letters. B 2022-08, Vol.831, p.137193, Article 137193
Main Authors: Morozov, A., Reva, M., Tselousov, N., Zenkevich, Y.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c426t-b73cf536d8ba4cdc0e9a4ab61d56707acea528e2027c8530506a499651de47d93
cites cdi_FETCH-LOGICAL-c426t-b73cf536d8ba4cdc0e9a4ab61d56707acea528e2027c8530506a499651de47d93
container_end_page
container_issue
container_start_page 137193
container_title Physics letters. B
container_volume 831
creator Morozov, A.
Reva, M.
Tselousov, N.
Zenkevich, Y.
description Recently we have started a program to describe the action of Lie algebras associated with Dynkin-type diagrams on generic Verma modules in terms of polynomial vector fields. In this paper we explain that the results for the classical ABCD series of Lie algebras coincide with the more conventional approach, based on the knowledge of the entire algebra, not only the simple roots. We apply the coset description, starting with a large representation and then reducing it with the help of the algebra, commuting with the original one. The irreducible representations are then obtained by gauge fixing this residual symmetry.
doi_str_mv 10.1016/j.physletb.2022.137193
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5f16e4efee4c4a968e4923e95ddee107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0370269322003276</els_id><doaj_id>oai_doaj_org_article_5f16e4efee4c4a968e4923e95ddee107</doaj_id><sourcerecordid>S0370269322003276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-b73cf536d8ba4cdc0e9a4ab61d56707acea528e2027c8530506a499651de47d93</originalsourceid><addsrcrecordid>eNqFkN1KAzEQhYMoWKuvIPsCuyabv82dUrQWCnqh12E2ma0p6W5JlkLf3q0Vb70amOF8c84h5J7RilGmHrbV_uuYI45tVdO6rhjXzPALMmON5mUthLwkM8o1LWtl-DW5yXlLKWWSqhlZvg_x2A-7ALFIuE-YsR9hDEOfi6ErXIScg5uO64AFxA22CXIBvS-6CJviACngGDDfkqsOYsa73zknny_PH4vXcv22XC2e1qUTtRrLVnPXSa5804Jw3lE0IKBVzEulqQaHIOsGpxzaNZLTySMIY5RkHoX2hs_J6sz1A2ztPoUdpKMdINifxZA2FtIYXEQrO6ZQYIconACjGhSm5mik94iM6omlziyXhpwTdn88Ru2pWjt9-K3Wnqq152on4eNZiFPSQ8BkswvYO_QhoRsnK-E_xDcK34as</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Polynomial representations of classical Lie algebras and flag varieties</title><source>ScienceDirect Journals</source><creator>Morozov, A. ; Reva, M. ; Tselousov, N. ; Zenkevich, Y.</creator><creatorcontrib>Morozov, A. ; Reva, M. ; Tselousov, N. ; Zenkevich, Y.</creatorcontrib><description>Recently we have started a program to describe the action of Lie algebras associated with Dynkin-type diagrams on generic Verma modules in terms of polynomial vector fields. In this paper we explain that the results for the classical ABCD series of Lie algebras coincide with the more conventional approach, based on the knowledge of the entire algebra, not only the simple roots. We apply the coset description, starting with a large representation and then reducing it with the help of the algebra, commuting with the original one. The irreducible representations are then obtained by gauge fixing this residual symmetry.</description><identifier>ISSN: 0370-2693</identifier><identifier>EISSN: 1873-2445</identifier><identifier>DOI: 10.1016/j.physletb.2022.137193</identifier><language>eng</language><publisher>Elsevier B.V</publisher><ispartof>Physics letters. B, 2022-08, Vol.831, p.137193, Article 137193</ispartof><rights>2022 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-b73cf536d8ba4cdc0e9a4ab61d56707acea528e2027c8530506a499651de47d93</citedby><cites>FETCH-LOGICAL-c426t-b73cf536d8ba4cdc0e9a4ab61d56707acea528e2027c8530506a499651de47d93</cites><orcidid>0000-0003-4600-8203</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0370269322003276$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Morozov, A.</creatorcontrib><creatorcontrib>Reva, M.</creatorcontrib><creatorcontrib>Tselousov, N.</creatorcontrib><creatorcontrib>Zenkevich, Y.</creatorcontrib><title>Polynomial representations of classical Lie algebras and flag varieties</title><title>Physics letters. B</title><description>Recently we have started a program to describe the action of Lie algebras associated with Dynkin-type diagrams on generic Verma modules in terms of polynomial vector fields. In this paper we explain that the results for the classical ABCD series of Lie algebras coincide with the more conventional approach, based on the knowledge of the entire algebra, not only the simple roots. We apply the coset description, starting with a large representation and then reducing it with the help of the algebra, commuting with the original one. The irreducible representations are then obtained by gauge fixing this residual symmetry.</description><issn>0370-2693</issn><issn>1873-2445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkN1KAzEQhYMoWKuvIPsCuyabv82dUrQWCnqh12E2ma0p6W5JlkLf3q0Vb70amOF8c84h5J7RilGmHrbV_uuYI45tVdO6rhjXzPALMmON5mUthLwkM8o1LWtl-DW5yXlLKWWSqhlZvg_x2A-7ALFIuE-YsR9hDEOfi6ErXIScg5uO64AFxA22CXIBvS-6CJviACngGDDfkqsOYsa73zknny_PH4vXcv22XC2e1qUTtRrLVnPXSa5804Jw3lE0IKBVzEulqQaHIOsGpxzaNZLTySMIY5RkHoX2hs_J6sz1A2ztPoUdpKMdINifxZA2FtIYXEQrO6ZQYIconACjGhSm5mik94iM6omlziyXhpwTdn88Ru2pWjt9-K3Wnqq152on4eNZiFPSQ8BkswvYO_QhoRsnK-E_xDcK34as</recordid><startdate>20220810</startdate><enddate>20220810</enddate><creator>Morozov, A.</creator><creator>Reva, M.</creator><creator>Tselousov, N.</creator><creator>Zenkevich, Y.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4600-8203</orcidid></search><sort><creationdate>20220810</creationdate><title>Polynomial representations of classical Lie algebras and flag varieties</title><author>Morozov, A. ; Reva, M. ; Tselousov, N. ; Zenkevich, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-b73cf536d8ba4cdc0e9a4ab61d56707acea528e2027c8530506a499651de47d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morozov, A.</creatorcontrib><creatorcontrib>Reva, M.</creatorcontrib><creatorcontrib>Tselousov, N.</creatorcontrib><creatorcontrib>Zenkevich, Y.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>Physics letters. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morozov, A.</au><au>Reva, M.</au><au>Tselousov, N.</au><au>Zenkevich, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polynomial representations of classical Lie algebras and flag varieties</atitle><jtitle>Physics letters. B</jtitle><date>2022-08-10</date><risdate>2022</risdate><volume>831</volume><spage>137193</spage><pages>137193-</pages><artnum>137193</artnum><issn>0370-2693</issn><eissn>1873-2445</eissn><abstract>Recently we have started a program to describe the action of Lie algebras associated with Dynkin-type diagrams on generic Verma modules in terms of polynomial vector fields. In this paper we explain that the results for the classical ABCD series of Lie algebras coincide with the more conventional approach, based on the knowledge of the entire algebra, not only the simple roots. We apply the coset description, starting with a large representation and then reducing it with the help of the algebra, commuting with the original one. The irreducible representations are then obtained by gauge fixing this residual symmetry.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physletb.2022.137193</doi><orcidid>https://orcid.org/0000-0003-4600-8203</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0370-2693
ispartof Physics letters. B, 2022-08, Vol.831, p.137193, Article 137193
issn 0370-2693
1873-2445
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5f16e4efee4c4a968e4923e95ddee107
source ScienceDirect Journals
title Polynomial representations of classical Lie algebras and flag varieties
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A58%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polynomial%20representations%20of%20classical%20Lie%20algebras%20and%20flag%20varieties&rft.jtitle=Physics%20letters.%20B&rft.au=Morozov,%20A.&rft.date=2022-08-10&rft.volume=831&rft.spage=137193&rft.pages=137193-&rft.artnum=137193&rft.issn=0370-2693&rft.eissn=1873-2445&rft_id=info:doi/10.1016/j.physletb.2022.137193&rft_dat=%3Celsevier_doaj_%3ES0370269322003276%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c426t-b73cf536d8ba4cdc0e9a4ab61d56707acea528e2027c8530506a499651de47d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true