Loading…
Polynomial representations of classical Lie algebras and flag varieties
Recently we have started a program to describe the action of Lie algebras associated with Dynkin-type diagrams on generic Verma modules in terms of polynomial vector fields. In this paper we explain that the results for the classical ABCD series of Lie algebras coincide with the more conventional ap...
Saved in:
Published in: | Physics letters. B 2022-08, Vol.831, p.137193, Article 137193 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c426t-b73cf536d8ba4cdc0e9a4ab61d56707acea528e2027c8530506a499651de47d93 |
---|---|
cites | cdi_FETCH-LOGICAL-c426t-b73cf536d8ba4cdc0e9a4ab61d56707acea528e2027c8530506a499651de47d93 |
container_end_page | |
container_issue | |
container_start_page | 137193 |
container_title | Physics letters. B |
container_volume | 831 |
creator | Morozov, A. Reva, M. Tselousov, N. Zenkevich, Y. |
description | Recently we have started a program to describe the action of Lie algebras associated with Dynkin-type diagrams on generic Verma modules in terms of polynomial vector fields. In this paper we explain that the results for the classical ABCD series of Lie algebras coincide with the more conventional approach, based on the knowledge of the entire algebra, not only the simple roots. We apply the coset description, starting with a large representation and then reducing it with the help of the algebra, commuting with the original one. The irreducible representations are then obtained by gauge fixing this residual symmetry. |
doi_str_mv | 10.1016/j.physletb.2022.137193 |
format | article |
fullrecord | <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5f16e4efee4c4a968e4923e95ddee107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0370269322003276</els_id><doaj_id>oai_doaj_org_article_5f16e4efee4c4a968e4923e95ddee107</doaj_id><sourcerecordid>S0370269322003276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-b73cf536d8ba4cdc0e9a4ab61d56707acea528e2027c8530506a499651de47d93</originalsourceid><addsrcrecordid>eNqFkN1KAzEQhYMoWKuvIPsCuyabv82dUrQWCnqh12E2ma0p6W5JlkLf3q0Vb70amOF8c84h5J7RilGmHrbV_uuYI45tVdO6rhjXzPALMmON5mUthLwkM8o1LWtl-DW5yXlLKWWSqhlZvg_x2A-7ALFIuE-YsR9hDEOfi6ErXIScg5uO64AFxA22CXIBvS-6CJviACngGDDfkqsOYsa73zknny_PH4vXcv22XC2e1qUTtRrLVnPXSa5804Jw3lE0IKBVzEulqQaHIOsGpxzaNZLTySMIY5RkHoX2hs_J6sz1A2ztPoUdpKMdINifxZA2FtIYXEQrO6ZQYIconACjGhSm5mik94iM6omlziyXhpwTdn88Ru2pWjt9-K3Wnqq152on4eNZiFPSQ8BkswvYO_QhoRsnK-E_xDcK34as</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Polynomial representations of classical Lie algebras and flag varieties</title><source>ScienceDirect Journals</source><creator>Morozov, A. ; Reva, M. ; Tselousov, N. ; Zenkevich, Y.</creator><creatorcontrib>Morozov, A. ; Reva, M. ; Tselousov, N. ; Zenkevich, Y.</creatorcontrib><description>Recently we have started a program to describe the action of Lie algebras associated with Dynkin-type diagrams on generic Verma modules in terms of polynomial vector fields. In this paper we explain that the results for the classical ABCD series of Lie algebras coincide with the more conventional approach, based on the knowledge of the entire algebra, not only the simple roots. We apply the coset description, starting with a large representation and then reducing it with the help of the algebra, commuting with the original one. The irreducible representations are then obtained by gauge fixing this residual symmetry.</description><identifier>ISSN: 0370-2693</identifier><identifier>EISSN: 1873-2445</identifier><identifier>DOI: 10.1016/j.physletb.2022.137193</identifier><language>eng</language><publisher>Elsevier B.V</publisher><ispartof>Physics letters. B, 2022-08, Vol.831, p.137193, Article 137193</ispartof><rights>2022 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-b73cf536d8ba4cdc0e9a4ab61d56707acea528e2027c8530506a499651de47d93</citedby><cites>FETCH-LOGICAL-c426t-b73cf536d8ba4cdc0e9a4ab61d56707acea528e2027c8530506a499651de47d93</cites><orcidid>0000-0003-4600-8203</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0370269322003276$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Morozov, A.</creatorcontrib><creatorcontrib>Reva, M.</creatorcontrib><creatorcontrib>Tselousov, N.</creatorcontrib><creatorcontrib>Zenkevich, Y.</creatorcontrib><title>Polynomial representations of classical Lie algebras and flag varieties</title><title>Physics letters. B</title><description>Recently we have started a program to describe the action of Lie algebras associated with Dynkin-type diagrams on generic Verma modules in terms of polynomial vector fields. In this paper we explain that the results for the classical ABCD series of Lie algebras coincide with the more conventional approach, based on the knowledge of the entire algebra, not only the simple roots. We apply the coset description, starting with a large representation and then reducing it with the help of the algebra, commuting with the original one. The irreducible representations are then obtained by gauge fixing this residual symmetry.</description><issn>0370-2693</issn><issn>1873-2445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkN1KAzEQhYMoWKuvIPsCuyabv82dUrQWCnqh12E2ma0p6W5JlkLf3q0Vb70amOF8c84h5J7RilGmHrbV_uuYI45tVdO6rhjXzPALMmON5mUthLwkM8o1LWtl-DW5yXlLKWWSqhlZvg_x2A-7ALFIuE-YsR9hDEOfi6ErXIScg5uO64AFxA22CXIBvS-6CJviACngGDDfkqsOYsa73zknny_PH4vXcv22XC2e1qUTtRrLVnPXSa5804Jw3lE0IKBVzEulqQaHIOsGpxzaNZLTySMIY5RkHoX2hs_J6sz1A2ztPoUdpKMdINifxZA2FtIYXEQrO6ZQYIconACjGhSm5mik94iM6omlziyXhpwTdn88Ru2pWjt9-K3Wnqq152on4eNZiFPSQ8BkswvYO_QhoRsnK-E_xDcK34as</recordid><startdate>20220810</startdate><enddate>20220810</enddate><creator>Morozov, A.</creator><creator>Reva, M.</creator><creator>Tselousov, N.</creator><creator>Zenkevich, Y.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4600-8203</orcidid></search><sort><creationdate>20220810</creationdate><title>Polynomial representations of classical Lie algebras and flag varieties</title><author>Morozov, A. ; Reva, M. ; Tselousov, N. ; Zenkevich, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-b73cf536d8ba4cdc0e9a4ab61d56707acea528e2027c8530506a499651de47d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morozov, A.</creatorcontrib><creatorcontrib>Reva, M.</creatorcontrib><creatorcontrib>Tselousov, N.</creatorcontrib><creatorcontrib>Zenkevich, Y.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>Physics letters. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morozov, A.</au><au>Reva, M.</au><au>Tselousov, N.</au><au>Zenkevich, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polynomial representations of classical Lie algebras and flag varieties</atitle><jtitle>Physics letters. B</jtitle><date>2022-08-10</date><risdate>2022</risdate><volume>831</volume><spage>137193</spage><pages>137193-</pages><artnum>137193</artnum><issn>0370-2693</issn><eissn>1873-2445</eissn><abstract>Recently we have started a program to describe the action of Lie algebras associated with Dynkin-type diagrams on generic Verma modules in terms of polynomial vector fields. In this paper we explain that the results for the classical ABCD series of Lie algebras coincide with the more conventional approach, based on the knowledge of the entire algebra, not only the simple roots. We apply the coset description, starting with a large representation and then reducing it with the help of the algebra, commuting with the original one. The irreducible representations are then obtained by gauge fixing this residual symmetry.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physletb.2022.137193</doi><orcidid>https://orcid.org/0000-0003-4600-8203</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0370-2693 |
ispartof | Physics letters. B, 2022-08, Vol.831, p.137193, Article 137193 |
issn | 0370-2693 1873-2445 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5f16e4efee4c4a968e4923e95ddee107 |
source | ScienceDirect Journals |
title | Polynomial representations of classical Lie algebras and flag varieties |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A58%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polynomial%20representations%20of%20classical%20Lie%20algebras%20and%20flag%20varieties&rft.jtitle=Physics%20letters.%20B&rft.au=Morozov,%20A.&rft.date=2022-08-10&rft.volume=831&rft.spage=137193&rft.pages=137193-&rft.artnum=137193&rft.issn=0370-2693&rft.eissn=1873-2445&rft_id=info:doi/10.1016/j.physletb.2022.137193&rft_dat=%3Celsevier_doaj_%3ES0370269322003276%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c426t-b73cf536d8ba4cdc0e9a4ab61d56707acea528e2027c8530506a499651de47d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |