Loading…
Effectuality study of a 3D motion correction algorithm in C-arm CTs of severely impaired image quality during transarterial chemoembolization
Background To evaluate effectivity of a 3D-motion correction algorithm in C-Arm CTs (CACT) with limited image quality (IQ) during transarterial chemoembolization (TACE). Methods From 1/2015-5/2021, 644 CACTs were performed in patients during TACE. Of these, 27 CACTs in 26 patients (18 m, 8f; 69.7 ye...
Saved in:
Published in: | Cancer imaging 2022-07, Vol.22 (1), p.1-37, Article 37 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c501t-5b0e27d48d02e127a5b231401e874f73ee8fb299b239f0dd29bb37fe3b9e0d603 |
---|---|
cites | cdi_FETCH-LOGICAL-c501t-5b0e27d48d02e127a5b231401e874f73ee8fb299b239f0dd29bb37fe3b9e0d603 |
container_end_page | 37 |
container_issue | 1 |
container_start_page | 1 |
container_title | Cancer imaging |
container_volume | 22 |
creator | Becker, Lena S Dewald, Cornelia L. A von Falck, Christian Werncke, Thomas Maschke, Sabine K Kloeckner, Roman Wacker, Frank K Meyer, Bernhard C Hinrichs, Jan B |
description | Background To evaluate effectivity of a 3D-motion correction algorithm in C-Arm CTs (CACT) with limited image quality (IQ) during transarterial chemoembolization (TACE). Methods From 1/2015-5/2021, 644 CACTs were performed in patients during TACE. Of these, 27 CACTs in 26 patients (18 m, 8f; 69.7 years [+ or -] 10.7 SD) of limited IQ were included. Post-processing of the original raw-data sets (CACT.sub.Org) included application of a 3D-motion correction algorithm and bone segmentation (CACT.sub.MC_no_bone). Four radiologists (R1-4) compared the images by choosing their preferred dataset and recommending repeat acquisition in case of severe IQ-impairment. R1,2 performed additional grading of intrahepatic vessel visualization, presence/extent of movement artifacts, and overall IQ. Results R1,2 demonstrated excellent interobserver agreement for overall IQ (ICC 0.79,p < 0.01) and the five-point vessel visualization scale before and after post-processing of the datasets (ICC 0.78,p < 0.01). Post-processing caused significant improvement, with overall IQ improving from 2.63 (CACT.sub.Org) to 1.39 (CACT.sub.MC_no_bone;p < 0.01) and a decrease in the mean distance of identifiable, subcapsular vessels to the liver capsule by 4 mm (p < 0.01). This proved especially true for datasets with low parenchymal and high hepatic artery contrast. A good interobserver agreement (ICC = 0.73) was recorded concerning the presence of motion artifacts, with significantly less discernible motion after post-processing (CACT.sub.Org:1.31 [+ or -] 1.67, CACT.sub.MC_no_bone:1.00 [+ or -] 1.34, p < 0.01). Of the 27 datasets, [greater than or equal to] 23 CACT.sub.MC_no_bone were preferred, with identical datasets chosen by the readers to show benefit from the algorithm. Conclusion Application of a 3D-motion correction algorithm significantly improved IQ in diagnostically limited CACTs during TACE, with the potential to decrease repeat acquisitions. Keywords: C-Arm CT, Transarterial chemoembolization, Motion correction algorithm, Interventional Radiology |
doi_str_mv | 10.1186/s40644-022-00473-3 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5f1ae7812ef34204b35f4f3037ec1f9c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718152301</galeid><doaj_id>oai_doaj_org_article_5f1ae7812ef34204b35f4f3037ec1f9c</doaj_id><sourcerecordid>A718152301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-5b0e27d48d02e127a5b231401e874f73ee8fb299b239f0dd29bb37fe3b9e0d603</originalsourceid><addsrcrecordid>eNptks1u1DAQxyMEoqXwApwsISEuKeOPxPEFqVoKVKrEpZwtxxnvepXErZ1UWt6Bd8bZXUEXIR88Gv_mPx-eonhL4ZLSpv6YBNRClMBYCSAkL_mz4pwKCaXkHJ4_sc-KVyltAZhqlHxZnPFKQQOsPi9-XTuHdppN76cdSdPc7UhwxBD-mQxh8mEkNsSYkcU0_TpEP20G4keyKk0cyOouLQEJHzFivyN-uDc-YpcNs0bycFTu5ujHNZmiGZOJE0ZvemI3OAQc2tD7n2ZJ8Lp44Uyf8M3xvih-fLm-W30rb79_vVld3Za2AjqVVQvIZCeaDhhSJk3VMk4FUGykcJIjNq5lSmWvctB1TLUtlw55qxC6GvhFcXPQ7YLZ6vuYa407HYzXe0eIa52L9LZHXTlqUDaUoeOCgWh55YTjwCVa6pTNWp8OWvdzO2BnccxN9ieipy-j3-h1eNSK86ZmSzEfjgIxPMyYJj34ZLHvzYhhTprVql7AWmX03T_oNsxxzKPSTIKgQBnQv9Ta5Ab86ELOaxdRfSVpQyvG99Tlf6h8Ohy8DSM6n_0nAe-fBGzQ9NMmhX5ePi6dguwA2hhSiuj-DIOCXjZXHzZX583V-83VnP8GrkbfhQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2704101201</pqid></control><display><type>article</type><title>Effectuality study of a 3D motion correction algorithm in C-arm CTs of severely impaired image quality during transarterial chemoembolization</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><creator>Becker, Lena S ; Dewald, Cornelia L. A ; von Falck, Christian ; Werncke, Thomas ; Maschke, Sabine K ; Kloeckner, Roman ; Wacker, Frank K ; Meyer, Bernhard C ; Hinrichs, Jan B</creator><creatorcontrib>Becker, Lena S ; Dewald, Cornelia L. A ; von Falck, Christian ; Werncke, Thomas ; Maschke, Sabine K ; Kloeckner, Roman ; Wacker, Frank K ; Meyer, Bernhard C ; Hinrichs, Jan B</creatorcontrib><description>Background To evaluate effectivity of a 3D-motion correction algorithm in C-Arm CTs (CACT) with limited image quality (IQ) during transarterial chemoembolization (TACE). Methods From 1/2015-5/2021, 644 CACTs were performed in patients during TACE. Of these, 27 CACTs in 26 patients (18 m, 8f; 69.7 years [+ or -] 10.7 SD) of limited IQ were included. Post-processing of the original raw-data sets (CACT.sub.Org) included application of a 3D-motion correction algorithm and bone segmentation (CACT.sub.MC_no_bone). Four radiologists (R1-4) compared the images by choosing their preferred dataset and recommending repeat acquisition in case of severe IQ-impairment. R1,2 performed additional grading of intrahepatic vessel visualization, presence/extent of movement artifacts, and overall IQ. Results R1,2 demonstrated excellent interobserver agreement for overall IQ (ICC 0.79,p < 0.01) and the five-point vessel visualization scale before and after post-processing of the datasets (ICC 0.78,p < 0.01). Post-processing caused significant improvement, with overall IQ improving from 2.63 (CACT.sub.Org) to 1.39 (CACT.sub.MC_no_bone;p < 0.01) and a decrease in the mean distance of identifiable, subcapsular vessels to the liver capsule by 4 mm (p < 0.01). This proved especially true for datasets with low parenchymal and high hepatic artery contrast. A good interobserver agreement (ICC = 0.73) was recorded concerning the presence of motion artifacts, with significantly less discernible motion after post-processing (CACT.sub.Org:1.31 [+ or -] 1.67, CACT.sub.MC_no_bone:1.00 [+ or -] 1.34, p < 0.01). Of the 27 datasets, [greater than or equal to] 23 CACT.sub.MC_no_bone were preferred, with identical datasets chosen by the readers to show benefit from the algorithm. Conclusion Application of a 3D-motion correction algorithm significantly improved IQ in diagnostically limited CACTs during TACE, with the potential to decrease repeat acquisitions. Keywords: C-Arm CT, Transarterial chemoembolization, Motion correction algorithm, Interventional Radiology</description><identifier>ISSN: 1470-7330</identifier><identifier>ISSN: 1740-5025</identifier><identifier>EISSN: 1470-7330</identifier><identifier>DOI: 10.1186/s40644-022-00473-3</identifier><identifier>PMID: 35908026</identifier><language>eng</language><publisher>London: BioMed Central Ltd</publisher><subject>Algorithms ; C-Arm CT ; Catheters ; Chemoembolization ; Comparative analysis ; Datasets ; Image acquisition ; Image quality ; Image segmentation ; Interventional Radiology ; Liver ; Medical imaging ; Motion correction algorithm ; Patients ; Sensors ; Software ; Statistical analysis ; Three dimensional motion ; Transarterial chemoembolization ; Veins & arteries ; Visualization ; Work stations</subject><ispartof>Cancer imaging, 2022-07, Vol.22 (1), p.1-37, Article 37</ispartof><rights>COPYRIGHT 2022 BioMed Central Ltd.</rights><rights>2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-5b0e27d48d02e127a5b231401e874f73ee8fb299b239f0dd29bb37fe3b9e0d603</citedby><cites>FETCH-LOGICAL-c501t-5b0e27d48d02e127a5b231401e874f73ee8fb299b239f0dd29bb37fe3b9e0d603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9338620/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2704101201?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids></links><search><creatorcontrib>Becker, Lena S</creatorcontrib><creatorcontrib>Dewald, Cornelia L. A</creatorcontrib><creatorcontrib>von Falck, Christian</creatorcontrib><creatorcontrib>Werncke, Thomas</creatorcontrib><creatorcontrib>Maschke, Sabine K</creatorcontrib><creatorcontrib>Kloeckner, Roman</creatorcontrib><creatorcontrib>Wacker, Frank K</creatorcontrib><creatorcontrib>Meyer, Bernhard C</creatorcontrib><creatorcontrib>Hinrichs, Jan B</creatorcontrib><title>Effectuality study of a 3D motion correction algorithm in C-arm CTs of severely impaired image quality during transarterial chemoembolization</title><title>Cancer imaging</title><description>Background To evaluate effectivity of a 3D-motion correction algorithm in C-Arm CTs (CACT) with limited image quality (IQ) during transarterial chemoembolization (TACE). Methods From 1/2015-5/2021, 644 CACTs were performed in patients during TACE. Of these, 27 CACTs in 26 patients (18 m, 8f; 69.7 years [+ or -] 10.7 SD) of limited IQ were included. Post-processing of the original raw-data sets (CACT.sub.Org) included application of a 3D-motion correction algorithm and bone segmentation (CACT.sub.MC_no_bone). Four radiologists (R1-4) compared the images by choosing their preferred dataset and recommending repeat acquisition in case of severe IQ-impairment. R1,2 performed additional grading of intrahepatic vessel visualization, presence/extent of movement artifacts, and overall IQ. Results R1,2 demonstrated excellent interobserver agreement for overall IQ (ICC 0.79,p < 0.01) and the five-point vessel visualization scale before and after post-processing of the datasets (ICC 0.78,p < 0.01). Post-processing caused significant improvement, with overall IQ improving from 2.63 (CACT.sub.Org) to 1.39 (CACT.sub.MC_no_bone;p < 0.01) and a decrease in the mean distance of identifiable, subcapsular vessels to the liver capsule by 4 mm (p < 0.01). This proved especially true for datasets with low parenchymal and high hepatic artery contrast. A good interobserver agreement (ICC = 0.73) was recorded concerning the presence of motion artifacts, with significantly less discernible motion after post-processing (CACT.sub.Org:1.31 [+ or -] 1.67, CACT.sub.MC_no_bone:1.00 [+ or -] 1.34, p < 0.01). Of the 27 datasets, [greater than or equal to] 23 CACT.sub.MC_no_bone were preferred, with identical datasets chosen by the readers to show benefit from the algorithm. Conclusion Application of a 3D-motion correction algorithm significantly improved IQ in diagnostically limited CACTs during TACE, with the potential to decrease repeat acquisitions. Keywords: C-Arm CT, Transarterial chemoembolization, Motion correction algorithm, Interventional Radiology</description><subject>Algorithms</subject><subject>C-Arm CT</subject><subject>Catheters</subject><subject>Chemoembolization</subject><subject>Comparative analysis</subject><subject>Datasets</subject><subject>Image acquisition</subject><subject>Image quality</subject><subject>Image segmentation</subject><subject>Interventional Radiology</subject><subject>Liver</subject><subject>Medical imaging</subject><subject>Motion correction algorithm</subject><subject>Patients</subject><subject>Sensors</subject><subject>Software</subject><subject>Statistical analysis</subject><subject>Three dimensional motion</subject><subject>Transarterial chemoembolization</subject><subject>Veins & arteries</subject><subject>Visualization</subject><subject>Work stations</subject><issn>1470-7330</issn><issn>1740-5025</issn><issn>1470-7330</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks1u1DAQxyMEoqXwApwsISEuKeOPxPEFqVoKVKrEpZwtxxnvepXErZ1UWt6Bd8bZXUEXIR88Gv_mPx-eonhL4ZLSpv6YBNRClMBYCSAkL_mz4pwKCaXkHJ4_sc-KVyltAZhqlHxZnPFKQQOsPi9-XTuHdppN76cdSdPc7UhwxBD-mQxh8mEkNsSYkcU0_TpEP20G4keyKk0cyOouLQEJHzFivyN-uDc-YpcNs0bycFTu5ujHNZmiGZOJE0ZvemI3OAQc2tD7n2ZJ8Lp44Uyf8M3xvih-fLm-W30rb79_vVld3Za2AjqVVQvIZCeaDhhSJk3VMk4FUGykcJIjNq5lSmWvctB1TLUtlw55qxC6GvhFcXPQ7YLZ6vuYa407HYzXe0eIa52L9LZHXTlqUDaUoeOCgWh55YTjwCVa6pTNWp8OWvdzO2BnccxN9ieipy-j3-h1eNSK86ZmSzEfjgIxPMyYJj34ZLHvzYhhTprVql7AWmX03T_oNsxxzKPSTIKgQBnQv9Ta5Ab86ELOaxdRfSVpQyvG99Tlf6h8Ohy8DSM6n_0nAe-fBGzQ9NMmhX5ePi6dguwA2hhSiuj-DIOCXjZXHzZX583V-83VnP8GrkbfhQ</recordid><startdate>20220730</startdate><enddate>20220730</enddate><creator>Becker, Lena S</creator><creator>Dewald, Cornelia L. A</creator><creator>von Falck, Christian</creator><creator>Werncke, Thomas</creator><creator>Maschke, Sabine K</creator><creator>Kloeckner, Roman</creator><creator>Wacker, Frank K</creator><creator>Meyer, Bernhard C</creator><creator>Hinrichs, Jan B</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220730</creationdate><title>Effectuality study of a 3D motion correction algorithm in C-arm CTs of severely impaired image quality during transarterial chemoembolization</title><author>Becker, Lena S ; Dewald, Cornelia L. A ; von Falck, Christian ; Werncke, Thomas ; Maschke, Sabine K ; Kloeckner, Roman ; Wacker, Frank K ; Meyer, Bernhard C ; Hinrichs, Jan B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-5b0e27d48d02e127a5b231401e874f73ee8fb299b239f0dd29bb37fe3b9e0d603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>C-Arm CT</topic><topic>Catheters</topic><topic>Chemoembolization</topic><topic>Comparative analysis</topic><topic>Datasets</topic><topic>Image acquisition</topic><topic>Image quality</topic><topic>Image segmentation</topic><topic>Interventional Radiology</topic><topic>Liver</topic><topic>Medical imaging</topic><topic>Motion correction algorithm</topic><topic>Patients</topic><topic>Sensors</topic><topic>Software</topic><topic>Statistical analysis</topic><topic>Three dimensional motion</topic><topic>Transarterial chemoembolization</topic><topic>Veins & arteries</topic><topic>Visualization</topic><topic>Work stations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Becker, Lena S</creatorcontrib><creatorcontrib>Dewald, Cornelia L. A</creatorcontrib><creatorcontrib>von Falck, Christian</creatorcontrib><creatorcontrib>Werncke, Thomas</creatorcontrib><creatorcontrib>Maschke, Sabine K</creatorcontrib><creatorcontrib>Kloeckner, Roman</creatorcontrib><creatorcontrib>Wacker, Frank K</creatorcontrib><creatorcontrib>Meyer, Bernhard C</creatorcontrib><creatorcontrib>Hinrichs, Jan B</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Proquest Health & Medical Complete</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Health Management Database (Proquest)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Cancer imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Becker, Lena S</au><au>Dewald, Cornelia L. A</au><au>von Falck, Christian</au><au>Werncke, Thomas</au><au>Maschke, Sabine K</au><au>Kloeckner, Roman</au><au>Wacker, Frank K</au><au>Meyer, Bernhard C</au><au>Hinrichs, Jan B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effectuality study of a 3D motion correction algorithm in C-arm CTs of severely impaired image quality during transarterial chemoembolization</atitle><jtitle>Cancer imaging</jtitle><date>2022-07-30</date><risdate>2022</risdate><volume>22</volume><issue>1</issue><spage>1</spage><epage>37</epage><pages>1-37</pages><artnum>37</artnum><issn>1470-7330</issn><issn>1740-5025</issn><eissn>1470-7330</eissn><abstract>Background To evaluate effectivity of a 3D-motion correction algorithm in C-Arm CTs (CACT) with limited image quality (IQ) during transarterial chemoembolization (TACE). Methods From 1/2015-5/2021, 644 CACTs were performed in patients during TACE. Of these, 27 CACTs in 26 patients (18 m, 8f; 69.7 years [+ or -] 10.7 SD) of limited IQ were included. Post-processing of the original raw-data sets (CACT.sub.Org) included application of a 3D-motion correction algorithm and bone segmentation (CACT.sub.MC_no_bone). Four radiologists (R1-4) compared the images by choosing their preferred dataset and recommending repeat acquisition in case of severe IQ-impairment. R1,2 performed additional grading of intrahepatic vessel visualization, presence/extent of movement artifacts, and overall IQ. Results R1,2 demonstrated excellent interobserver agreement for overall IQ (ICC 0.79,p < 0.01) and the five-point vessel visualization scale before and after post-processing of the datasets (ICC 0.78,p < 0.01). Post-processing caused significant improvement, with overall IQ improving from 2.63 (CACT.sub.Org) to 1.39 (CACT.sub.MC_no_bone;p < 0.01) and a decrease in the mean distance of identifiable, subcapsular vessels to the liver capsule by 4 mm (p < 0.01). This proved especially true for datasets with low parenchymal and high hepatic artery contrast. A good interobserver agreement (ICC = 0.73) was recorded concerning the presence of motion artifacts, with significantly less discernible motion after post-processing (CACT.sub.Org:1.31 [+ or -] 1.67, CACT.sub.MC_no_bone:1.00 [+ or -] 1.34, p < 0.01). Of the 27 datasets, [greater than or equal to] 23 CACT.sub.MC_no_bone were preferred, with identical datasets chosen by the readers to show benefit from the algorithm. Conclusion Application of a 3D-motion correction algorithm significantly improved IQ in diagnostically limited CACTs during TACE, with the potential to decrease repeat acquisitions. Keywords: C-Arm CT, Transarterial chemoembolization, Motion correction algorithm, Interventional Radiology</abstract><cop>London</cop><pub>BioMed Central Ltd</pub><pmid>35908026</pmid><doi>10.1186/s40644-022-00473-3</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1470-7330 |
ispartof | Cancer imaging, 2022-07, Vol.22 (1), p.1-37, Article 37 |
issn | 1470-7330 1740-5025 1470-7330 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5f1ae7812ef34204b35f4f3037ec1f9c |
source | Open Access: PubMed Central; Publicly Available Content (ProQuest) |
subjects | Algorithms C-Arm CT Catheters Chemoembolization Comparative analysis Datasets Image acquisition Image quality Image segmentation Interventional Radiology Liver Medical imaging Motion correction algorithm Patients Sensors Software Statistical analysis Three dimensional motion Transarterial chemoembolization Veins & arteries Visualization Work stations |
title | Effectuality study of a 3D motion correction algorithm in C-arm CTs of severely impaired image quality during transarterial chemoembolization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A35%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effectuality%20study%20of%20a%203D%20motion%20correction%20algorithm%20in%20C-arm%20CTs%20of%20severely%20impaired%20image%20quality%20during%20transarterial%20chemoembolization&rft.jtitle=Cancer%20imaging&rft.au=Becker,%20Lena%20S&rft.date=2022-07-30&rft.volume=22&rft.issue=1&rft.spage=1&rft.epage=37&rft.pages=1-37&rft.artnum=37&rft.issn=1470-7330&rft.eissn=1470-7330&rft_id=info:doi/10.1186/s40644-022-00473-3&rft_dat=%3Cgale_doaj_%3EA718152301%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c501t-5b0e27d48d02e127a5b231401e874f73ee8fb299b239f0dd29bb37fe3b9e0d603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2704101201&rft_id=info:pmid/35908026&rft_galeid=A718152301&rfr_iscdi=true |