Loading…

Effectuality study of a 3D motion correction algorithm in C-arm CTs of severely impaired image quality during transarterial chemoembolization

Background To evaluate effectivity of a 3D-motion correction algorithm in C-Arm CTs (CACT) with limited image quality (IQ) during transarterial chemoembolization (TACE). Methods From 1/2015-5/2021, 644 CACTs were performed in patients during TACE. Of these, 27 CACTs in 26 patients (18 m, 8f; 69.7 ye...

Full description

Saved in:
Bibliographic Details
Published in:Cancer imaging 2022-07, Vol.22 (1), p.1-37, Article 37
Main Authors: Becker, Lena S, Dewald, Cornelia L. A, von Falck, Christian, Werncke, Thomas, Maschke, Sabine K, Kloeckner, Roman, Wacker, Frank K, Meyer, Bernhard C, Hinrichs, Jan B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c501t-5b0e27d48d02e127a5b231401e874f73ee8fb299b239f0dd29bb37fe3b9e0d603
cites cdi_FETCH-LOGICAL-c501t-5b0e27d48d02e127a5b231401e874f73ee8fb299b239f0dd29bb37fe3b9e0d603
container_end_page 37
container_issue 1
container_start_page 1
container_title Cancer imaging
container_volume 22
creator Becker, Lena S
Dewald, Cornelia L. A
von Falck, Christian
Werncke, Thomas
Maschke, Sabine K
Kloeckner, Roman
Wacker, Frank K
Meyer, Bernhard C
Hinrichs, Jan B
description Background To evaluate effectivity of a 3D-motion correction algorithm in C-Arm CTs (CACT) with limited image quality (IQ) during transarterial chemoembolization (TACE). Methods From 1/2015-5/2021, 644 CACTs were performed in patients during TACE. Of these, 27 CACTs in 26 patients (18 m, 8f; 69.7 years [+ or -] 10.7 SD) of limited IQ were included. Post-processing of the original raw-data sets (CACT.sub.Org) included application of a 3D-motion correction algorithm and bone segmentation (CACT.sub.MC_no_bone). Four radiologists (R1-4) compared the images by choosing their preferred dataset and recommending repeat acquisition in case of severe IQ-impairment. R1,2 performed additional grading of intrahepatic vessel visualization, presence/extent of movement artifacts, and overall IQ. Results R1,2 demonstrated excellent interobserver agreement for overall IQ (ICC 0.79,p < 0.01) and the five-point vessel visualization scale before and after post-processing of the datasets (ICC 0.78,p < 0.01). Post-processing caused significant improvement, with overall IQ improving from 2.63 (CACT.sub.Org) to 1.39 (CACT.sub.MC_no_bone;p < 0.01) and a decrease in the mean distance of identifiable, subcapsular vessels to the liver capsule by 4 mm (p < 0.01). This proved especially true for datasets with low parenchymal and high hepatic artery contrast. A good interobserver agreement (ICC = 0.73) was recorded concerning the presence of motion artifacts, with significantly less discernible motion after post-processing (CACT.sub.Org:1.31 [+ or -] 1.67, CACT.sub.MC_no_bone:1.00 [+ or -] 1.34, p < 0.01). Of the 27 datasets, [greater than or equal to] 23 CACT.sub.MC_no_bone were preferred, with identical datasets chosen by the readers to show benefit from the algorithm. Conclusion Application of a 3D-motion correction algorithm significantly improved IQ in diagnostically limited CACTs during TACE, with the potential to decrease repeat acquisitions. Keywords: C-Arm CT, Transarterial chemoembolization, Motion correction algorithm, Interventional Radiology
doi_str_mv 10.1186/s40644-022-00473-3
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5f1ae7812ef34204b35f4f3037ec1f9c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718152301</galeid><doaj_id>oai_doaj_org_article_5f1ae7812ef34204b35f4f3037ec1f9c</doaj_id><sourcerecordid>A718152301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-5b0e27d48d02e127a5b231401e874f73ee8fb299b239f0dd29bb37fe3b9e0d603</originalsourceid><addsrcrecordid>eNptks1u1DAQxyMEoqXwApwsISEuKeOPxPEFqVoKVKrEpZwtxxnvepXErZ1UWt6Bd8bZXUEXIR88Gv_mPx-eonhL4ZLSpv6YBNRClMBYCSAkL_mz4pwKCaXkHJ4_sc-KVyltAZhqlHxZnPFKQQOsPi9-XTuHdppN76cdSdPc7UhwxBD-mQxh8mEkNsSYkcU0_TpEP20G4keyKk0cyOouLQEJHzFivyN-uDc-YpcNs0bycFTu5ujHNZmiGZOJE0ZvemI3OAQc2tD7n2ZJ8Lp44Uyf8M3xvih-fLm-W30rb79_vVld3Za2AjqVVQvIZCeaDhhSJk3VMk4FUGykcJIjNq5lSmWvctB1TLUtlw55qxC6GvhFcXPQ7YLZ6vuYa407HYzXe0eIa52L9LZHXTlqUDaUoeOCgWh55YTjwCVa6pTNWp8OWvdzO2BnccxN9ieipy-j3-h1eNSK86ZmSzEfjgIxPMyYJj34ZLHvzYhhTprVql7AWmX03T_oNsxxzKPSTIKgQBnQv9Ta5Ab86ELOaxdRfSVpQyvG99Tlf6h8Ohy8DSM6n_0nAe-fBGzQ9NMmhX5ePi6dguwA2hhSiuj-DIOCXjZXHzZX583V-83VnP8GrkbfhQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2704101201</pqid></control><display><type>article</type><title>Effectuality study of a 3D motion correction algorithm in C-arm CTs of severely impaired image quality during transarterial chemoembolization</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><creator>Becker, Lena S ; Dewald, Cornelia L. A ; von Falck, Christian ; Werncke, Thomas ; Maschke, Sabine K ; Kloeckner, Roman ; Wacker, Frank K ; Meyer, Bernhard C ; Hinrichs, Jan B</creator><creatorcontrib>Becker, Lena S ; Dewald, Cornelia L. A ; von Falck, Christian ; Werncke, Thomas ; Maschke, Sabine K ; Kloeckner, Roman ; Wacker, Frank K ; Meyer, Bernhard C ; Hinrichs, Jan B</creatorcontrib><description>Background To evaluate effectivity of a 3D-motion correction algorithm in C-Arm CTs (CACT) with limited image quality (IQ) during transarterial chemoembolization (TACE). Methods From 1/2015-5/2021, 644 CACTs were performed in patients during TACE. Of these, 27 CACTs in 26 patients (18 m, 8f; 69.7 years [+ or -] 10.7 SD) of limited IQ were included. Post-processing of the original raw-data sets (CACT.sub.Org) included application of a 3D-motion correction algorithm and bone segmentation (CACT.sub.MC_no_bone). Four radiologists (R1-4) compared the images by choosing their preferred dataset and recommending repeat acquisition in case of severe IQ-impairment. R1,2 performed additional grading of intrahepatic vessel visualization, presence/extent of movement artifacts, and overall IQ. Results R1,2 demonstrated excellent interobserver agreement for overall IQ (ICC 0.79,p &lt; 0.01) and the five-point vessel visualization scale before and after post-processing of the datasets (ICC 0.78,p &lt; 0.01). Post-processing caused significant improvement, with overall IQ improving from 2.63 (CACT.sub.Org) to 1.39 (CACT.sub.MC_no_bone;p &lt; 0.01) and a decrease in the mean distance of identifiable, subcapsular vessels to the liver capsule by 4 mm (p &lt; 0.01). This proved especially true for datasets with low parenchymal and high hepatic artery contrast. A good interobserver agreement (ICC = 0.73) was recorded concerning the presence of motion artifacts, with significantly less discernible motion after post-processing (CACT.sub.Org:1.31 [+ or -] 1.67, CACT.sub.MC_no_bone:1.00 [+ or -] 1.34, p &lt; 0.01). Of the 27 datasets, [greater than or equal to] 23 CACT.sub.MC_no_bone were preferred, with identical datasets chosen by the readers to show benefit from the algorithm. Conclusion Application of a 3D-motion correction algorithm significantly improved IQ in diagnostically limited CACTs during TACE, with the potential to decrease repeat acquisitions. Keywords: C-Arm CT, Transarterial chemoembolization, Motion correction algorithm, Interventional Radiology</description><identifier>ISSN: 1470-7330</identifier><identifier>ISSN: 1740-5025</identifier><identifier>EISSN: 1470-7330</identifier><identifier>DOI: 10.1186/s40644-022-00473-3</identifier><identifier>PMID: 35908026</identifier><language>eng</language><publisher>London: BioMed Central Ltd</publisher><subject>Algorithms ; C-Arm CT ; Catheters ; Chemoembolization ; Comparative analysis ; Datasets ; Image acquisition ; Image quality ; Image segmentation ; Interventional Radiology ; Liver ; Medical imaging ; Motion correction algorithm ; Patients ; Sensors ; Software ; Statistical analysis ; Three dimensional motion ; Transarterial chemoembolization ; Veins &amp; arteries ; Visualization ; Work stations</subject><ispartof>Cancer imaging, 2022-07, Vol.22 (1), p.1-37, Article 37</ispartof><rights>COPYRIGHT 2022 BioMed Central Ltd.</rights><rights>2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-5b0e27d48d02e127a5b231401e874f73ee8fb299b239f0dd29bb37fe3b9e0d603</citedby><cites>FETCH-LOGICAL-c501t-5b0e27d48d02e127a5b231401e874f73ee8fb299b239f0dd29bb37fe3b9e0d603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9338620/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2704101201?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids></links><search><creatorcontrib>Becker, Lena S</creatorcontrib><creatorcontrib>Dewald, Cornelia L. A</creatorcontrib><creatorcontrib>von Falck, Christian</creatorcontrib><creatorcontrib>Werncke, Thomas</creatorcontrib><creatorcontrib>Maschke, Sabine K</creatorcontrib><creatorcontrib>Kloeckner, Roman</creatorcontrib><creatorcontrib>Wacker, Frank K</creatorcontrib><creatorcontrib>Meyer, Bernhard C</creatorcontrib><creatorcontrib>Hinrichs, Jan B</creatorcontrib><title>Effectuality study of a 3D motion correction algorithm in C-arm CTs of severely impaired image quality during transarterial chemoembolization</title><title>Cancer imaging</title><description>Background To evaluate effectivity of a 3D-motion correction algorithm in C-Arm CTs (CACT) with limited image quality (IQ) during transarterial chemoembolization (TACE). Methods From 1/2015-5/2021, 644 CACTs were performed in patients during TACE. Of these, 27 CACTs in 26 patients (18 m, 8f; 69.7 years [+ or -] 10.7 SD) of limited IQ were included. Post-processing of the original raw-data sets (CACT.sub.Org) included application of a 3D-motion correction algorithm and bone segmentation (CACT.sub.MC_no_bone). Four radiologists (R1-4) compared the images by choosing their preferred dataset and recommending repeat acquisition in case of severe IQ-impairment. R1,2 performed additional grading of intrahepatic vessel visualization, presence/extent of movement artifacts, and overall IQ. Results R1,2 demonstrated excellent interobserver agreement for overall IQ (ICC 0.79,p &lt; 0.01) and the five-point vessel visualization scale before and after post-processing of the datasets (ICC 0.78,p &lt; 0.01). Post-processing caused significant improvement, with overall IQ improving from 2.63 (CACT.sub.Org) to 1.39 (CACT.sub.MC_no_bone;p &lt; 0.01) and a decrease in the mean distance of identifiable, subcapsular vessels to the liver capsule by 4 mm (p &lt; 0.01). This proved especially true for datasets with low parenchymal and high hepatic artery contrast. A good interobserver agreement (ICC = 0.73) was recorded concerning the presence of motion artifacts, with significantly less discernible motion after post-processing (CACT.sub.Org:1.31 [+ or -] 1.67, CACT.sub.MC_no_bone:1.00 [+ or -] 1.34, p &lt; 0.01). Of the 27 datasets, [greater than or equal to] 23 CACT.sub.MC_no_bone were preferred, with identical datasets chosen by the readers to show benefit from the algorithm. Conclusion Application of a 3D-motion correction algorithm significantly improved IQ in diagnostically limited CACTs during TACE, with the potential to decrease repeat acquisitions. Keywords: C-Arm CT, Transarterial chemoembolization, Motion correction algorithm, Interventional Radiology</description><subject>Algorithms</subject><subject>C-Arm CT</subject><subject>Catheters</subject><subject>Chemoembolization</subject><subject>Comparative analysis</subject><subject>Datasets</subject><subject>Image acquisition</subject><subject>Image quality</subject><subject>Image segmentation</subject><subject>Interventional Radiology</subject><subject>Liver</subject><subject>Medical imaging</subject><subject>Motion correction algorithm</subject><subject>Patients</subject><subject>Sensors</subject><subject>Software</subject><subject>Statistical analysis</subject><subject>Three dimensional motion</subject><subject>Transarterial chemoembolization</subject><subject>Veins &amp; arteries</subject><subject>Visualization</subject><subject>Work stations</subject><issn>1470-7330</issn><issn>1740-5025</issn><issn>1470-7330</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks1u1DAQxyMEoqXwApwsISEuKeOPxPEFqVoKVKrEpZwtxxnvepXErZ1UWt6Bd8bZXUEXIR88Gv_mPx-eonhL4ZLSpv6YBNRClMBYCSAkL_mz4pwKCaXkHJ4_sc-KVyltAZhqlHxZnPFKQQOsPi9-XTuHdppN76cdSdPc7UhwxBD-mQxh8mEkNsSYkcU0_TpEP20G4keyKk0cyOouLQEJHzFivyN-uDc-YpcNs0bycFTu5ujHNZmiGZOJE0ZvemI3OAQc2tD7n2ZJ8Lp44Uyf8M3xvih-fLm-W30rb79_vVld3Za2AjqVVQvIZCeaDhhSJk3VMk4FUGykcJIjNq5lSmWvctB1TLUtlw55qxC6GvhFcXPQ7YLZ6vuYa407HYzXe0eIa52L9LZHXTlqUDaUoeOCgWh55YTjwCVa6pTNWp8OWvdzO2BnccxN9ieipy-j3-h1eNSK86ZmSzEfjgIxPMyYJj34ZLHvzYhhTprVql7AWmX03T_oNsxxzKPSTIKgQBnQv9Ta5Ab86ELOaxdRfSVpQyvG99Tlf6h8Ohy8DSM6n_0nAe-fBGzQ9NMmhX5ePi6dguwA2hhSiuj-DIOCXjZXHzZX583V-83VnP8GrkbfhQ</recordid><startdate>20220730</startdate><enddate>20220730</enddate><creator>Becker, Lena S</creator><creator>Dewald, Cornelia L. A</creator><creator>von Falck, Christian</creator><creator>Werncke, Thomas</creator><creator>Maschke, Sabine K</creator><creator>Kloeckner, Roman</creator><creator>Wacker, Frank K</creator><creator>Meyer, Bernhard C</creator><creator>Hinrichs, Jan B</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20220730</creationdate><title>Effectuality study of a 3D motion correction algorithm in C-arm CTs of severely impaired image quality during transarterial chemoembolization</title><author>Becker, Lena S ; Dewald, Cornelia L. A ; von Falck, Christian ; Werncke, Thomas ; Maschke, Sabine K ; Kloeckner, Roman ; Wacker, Frank K ; Meyer, Bernhard C ; Hinrichs, Jan B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-5b0e27d48d02e127a5b231401e874f73ee8fb299b239f0dd29bb37fe3b9e0d603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>C-Arm CT</topic><topic>Catheters</topic><topic>Chemoembolization</topic><topic>Comparative analysis</topic><topic>Datasets</topic><topic>Image acquisition</topic><topic>Image quality</topic><topic>Image segmentation</topic><topic>Interventional Radiology</topic><topic>Liver</topic><topic>Medical imaging</topic><topic>Motion correction algorithm</topic><topic>Patients</topic><topic>Sensors</topic><topic>Software</topic><topic>Statistical analysis</topic><topic>Three dimensional motion</topic><topic>Transarterial chemoembolization</topic><topic>Veins &amp; arteries</topic><topic>Visualization</topic><topic>Work stations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Becker, Lena S</creatorcontrib><creatorcontrib>Dewald, Cornelia L. A</creatorcontrib><creatorcontrib>von Falck, Christian</creatorcontrib><creatorcontrib>Werncke, Thomas</creatorcontrib><creatorcontrib>Maschke, Sabine K</creatorcontrib><creatorcontrib>Kloeckner, Roman</creatorcontrib><creatorcontrib>Wacker, Frank K</creatorcontrib><creatorcontrib>Meyer, Bernhard C</creatorcontrib><creatorcontrib>Hinrichs, Jan B</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Proquest Health &amp; Medical Complete</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Health Management Database (Proquest)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Cancer imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Becker, Lena S</au><au>Dewald, Cornelia L. A</au><au>von Falck, Christian</au><au>Werncke, Thomas</au><au>Maschke, Sabine K</au><au>Kloeckner, Roman</au><au>Wacker, Frank K</au><au>Meyer, Bernhard C</au><au>Hinrichs, Jan B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effectuality study of a 3D motion correction algorithm in C-arm CTs of severely impaired image quality during transarterial chemoembolization</atitle><jtitle>Cancer imaging</jtitle><date>2022-07-30</date><risdate>2022</risdate><volume>22</volume><issue>1</issue><spage>1</spage><epage>37</epage><pages>1-37</pages><artnum>37</artnum><issn>1470-7330</issn><issn>1740-5025</issn><eissn>1470-7330</eissn><abstract>Background To evaluate effectivity of a 3D-motion correction algorithm in C-Arm CTs (CACT) with limited image quality (IQ) during transarterial chemoembolization (TACE). Methods From 1/2015-5/2021, 644 CACTs were performed in patients during TACE. Of these, 27 CACTs in 26 patients (18 m, 8f; 69.7 years [+ or -] 10.7 SD) of limited IQ were included. Post-processing of the original raw-data sets (CACT.sub.Org) included application of a 3D-motion correction algorithm and bone segmentation (CACT.sub.MC_no_bone). Four radiologists (R1-4) compared the images by choosing their preferred dataset and recommending repeat acquisition in case of severe IQ-impairment. R1,2 performed additional grading of intrahepatic vessel visualization, presence/extent of movement artifacts, and overall IQ. Results R1,2 demonstrated excellent interobserver agreement for overall IQ (ICC 0.79,p &lt; 0.01) and the five-point vessel visualization scale before and after post-processing of the datasets (ICC 0.78,p &lt; 0.01). Post-processing caused significant improvement, with overall IQ improving from 2.63 (CACT.sub.Org) to 1.39 (CACT.sub.MC_no_bone;p &lt; 0.01) and a decrease in the mean distance of identifiable, subcapsular vessels to the liver capsule by 4 mm (p &lt; 0.01). This proved especially true for datasets with low parenchymal and high hepatic artery contrast. A good interobserver agreement (ICC = 0.73) was recorded concerning the presence of motion artifacts, with significantly less discernible motion after post-processing (CACT.sub.Org:1.31 [+ or -] 1.67, CACT.sub.MC_no_bone:1.00 [+ or -] 1.34, p &lt; 0.01). Of the 27 datasets, [greater than or equal to] 23 CACT.sub.MC_no_bone were preferred, with identical datasets chosen by the readers to show benefit from the algorithm. Conclusion Application of a 3D-motion correction algorithm significantly improved IQ in diagnostically limited CACTs during TACE, with the potential to decrease repeat acquisitions. Keywords: C-Arm CT, Transarterial chemoembolization, Motion correction algorithm, Interventional Radiology</abstract><cop>London</cop><pub>BioMed Central Ltd</pub><pmid>35908026</pmid><doi>10.1186/s40644-022-00473-3</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1470-7330
ispartof Cancer imaging, 2022-07, Vol.22 (1), p.1-37, Article 37
issn 1470-7330
1740-5025
1470-7330
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5f1ae7812ef34204b35f4f3037ec1f9c
source Open Access: PubMed Central; Publicly Available Content (ProQuest)
subjects Algorithms
C-Arm CT
Catheters
Chemoembolization
Comparative analysis
Datasets
Image acquisition
Image quality
Image segmentation
Interventional Radiology
Liver
Medical imaging
Motion correction algorithm
Patients
Sensors
Software
Statistical analysis
Three dimensional motion
Transarterial chemoembolization
Veins & arteries
Visualization
Work stations
title Effectuality study of a 3D motion correction algorithm in C-arm CTs of severely impaired image quality during transarterial chemoembolization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A35%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effectuality%20study%20of%20a%203D%20motion%20correction%20algorithm%20in%20C-arm%20CTs%20of%20severely%20impaired%20image%20quality%20during%20transarterial%20chemoembolization&rft.jtitle=Cancer%20imaging&rft.au=Becker,%20Lena%20S&rft.date=2022-07-30&rft.volume=22&rft.issue=1&rft.spage=1&rft.epage=37&rft.pages=1-37&rft.artnum=37&rft.issn=1470-7330&rft.eissn=1470-7330&rft_id=info:doi/10.1186/s40644-022-00473-3&rft_dat=%3Cgale_doaj_%3EA718152301%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c501t-5b0e27d48d02e127a5b231401e874f73ee8fb299b239f0dd29bb37fe3b9e0d603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2704101201&rft_id=info:pmid/35908026&rft_galeid=A718152301&rfr_iscdi=true