Loading…

Automatically transforming full length biomedical articles into search queries for retrieving related articles

Searching relevant articles from medical resources is an important search task in clinical decision support system. The technical contents and long length of biomedical articles make this search task more complicated than many other search tasks. Previous research on biomedical information retrieval...

Full description

Saved in:
Bibliographic Details
Published in:Egyptian informatics journal 2021-03, Vol.22 (1), p.75-84
Main Authors: Bashir, Shariq, Khattak, Akmal Saeed, Alshara, Mohammed Ali
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c358t-7cbcdcc8a04f3d7bd4f36bd4f1350d067751bd40805cf0e5926a74d27045eb3c3
container_end_page 84
container_issue 1
container_start_page 75
container_title Egyptian informatics journal
container_volume 22
creator Bashir, Shariq
Khattak, Akmal Saeed
Alshara, Mohammed Ali
description Searching relevant articles from medical resources is an important search task in clinical decision support system. The technical contents and long length of biomedical articles make this search task more complicated than many other search tasks. Previous research on biomedical information retrieval (IR) is typically based on keyword search. In this paper we propose a new approach. Using our approach, a user can use the full article as a query. This reduces the burden on the users and generates an effective automatic query from many more useful search features. In this novel search scenario, we explore in detail several important factors for developing a successful biomedical articles retrieval system, especially focusing on how to automatically convert an article into an effective search query. Specifically, we evaluate the performance of single features with different parameter configurations, as well as combinations of these features using the techniques of learning to rank and rank fusion. Experimental results on PubMed collection show that the introduction field is the most useful feature for transforming a query. Furthermore, our experiments showed that combining multiple features can significantly improve the effectiveness of a search system.
doi_str_mv 10.1016/j.eij.2020.04.004
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5f1cebfe744b425b98925cb2b1f489bf</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1110866520301183</els_id><doaj_id>oai_doaj_org_article_5f1cebfe744b425b98925cb2b1f489bf</doaj_id><sourcerecordid>S1110866520301183</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-7cbcdcc8a04f3d7bd4f36bd4f1350d067751bd40805cf0e5926a74d27045eb3c3</originalsourceid><addsrcrecordid>eNp9kNtKxDAQhoMouKgP4F1eoHWSJj3glYiHBcEbvQ5JOtlN6baaZBd8e1NXvDQXmQPz_8x8hFwzKBmw-mYo0Q8lBw4liBJAnJAVhw4K0UhxSlaMMSjaupbn5CrGAfKrGReyXpHpbp_mnU7e6nH8oinoKbo57Py0oW4_jnTEaZO21Ph5h_0yRXXI0yNG6qc004g62C393GPwuZe1NGDK-WGxCDjqhP2f5pKcOT1GvPqNF-T98eHt_rl4eX1a39-9FLaSbSoaa2xvbatBuKpvTJ9DvfysktBD3TSS5RJakNYByo7XuhE9b0BINJWtLsj66NvPelAfwe90-FKz9uqnMYeN-l1JSccsGoeNEEZwabq249IabpgTbWdc9mJHLxvmGAO6Pz8GauGvBpX5q4W_AqEy_6y5PWowH3nwGFS0HiebEQa0KW_h_1F_A2sAkKY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Automatically transforming full length biomedical articles into search queries for retrieving related articles</title><source>ScienceDirect®</source><creator>Bashir, Shariq ; Khattak, Akmal Saeed ; Alshara, Mohammed Ali</creator><creatorcontrib>Bashir, Shariq ; Khattak, Akmal Saeed ; Alshara, Mohammed Ali</creatorcontrib><description>Searching relevant articles from medical resources is an important search task in clinical decision support system. The technical contents and long length of biomedical articles make this search task more complicated than many other search tasks. Previous research on biomedical information retrieval (IR) is typically based on keyword search. In this paper we propose a new approach. Using our approach, a user can use the full article as a query. This reduces the burden on the users and generates an effective automatic query from many more useful search features. In this novel search scenario, we explore in detail several important factors for developing a successful biomedical articles retrieval system, especially focusing on how to automatically convert an article into an effective search query. Specifically, we evaluate the performance of single features with different parameter configurations, as well as combinations of these features using the techniques of learning to rank and rank fusion. Experimental results on PubMed collection show that the introduction field is the most useful feature for transforming a query. Furthermore, our experiments showed that combining multiple features can significantly improve the effectiveness of a search system.</description><identifier>ISSN: 1110-8665</identifier><identifier>EISSN: 2090-4754</identifier><identifier>DOI: 10.1016/j.eij.2020.04.004</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Biomedical search system ; Clinical decision support system ; Information retrieval ; Learn to rank ; Related citation search</subject><ispartof>Egyptian informatics journal, 2021-03, Vol.22 (1), p.75-84</ispartof><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c358t-7cbcdcc8a04f3d7bd4f36bd4f1350d067751bd40805cf0e5926a74d27045eb3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1110866520301183$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Bashir, Shariq</creatorcontrib><creatorcontrib>Khattak, Akmal Saeed</creatorcontrib><creatorcontrib>Alshara, Mohammed Ali</creatorcontrib><title>Automatically transforming full length biomedical articles into search queries for retrieving related articles</title><title>Egyptian informatics journal</title><description>Searching relevant articles from medical resources is an important search task in clinical decision support system. The technical contents and long length of biomedical articles make this search task more complicated than many other search tasks. Previous research on biomedical information retrieval (IR) is typically based on keyword search. In this paper we propose a new approach. Using our approach, a user can use the full article as a query. This reduces the burden on the users and generates an effective automatic query from many more useful search features. In this novel search scenario, we explore in detail several important factors for developing a successful biomedical articles retrieval system, especially focusing on how to automatically convert an article into an effective search query. Specifically, we evaluate the performance of single features with different parameter configurations, as well as combinations of these features using the techniques of learning to rank and rank fusion. Experimental results on PubMed collection show that the introduction field is the most useful feature for transforming a query. Furthermore, our experiments showed that combining multiple features can significantly improve the effectiveness of a search system.</description><subject>Biomedical search system</subject><subject>Clinical decision support system</subject><subject>Information retrieval</subject><subject>Learn to rank</subject><subject>Related citation search</subject><issn>1110-8665</issn><issn>2090-4754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kNtKxDAQhoMouKgP4F1eoHWSJj3glYiHBcEbvQ5JOtlN6baaZBd8e1NXvDQXmQPz_8x8hFwzKBmw-mYo0Q8lBw4liBJAnJAVhw4K0UhxSlaMMSjaupbn5CrGAfKrGReyXpHpbp_mnU7e6nH8oinoKbo57Py0oW4_jnTEaZO21Ph5h_0yRXXI0yNG6qc004g62C393GPwuZe1NGDK-WGxCDjqhP2f5pKcOT1GvPqNF-T98eHt_rl4eX1a39-9FLaSbSoaa2xvbatBuKpvTJ9DvfysktBD3TSS5RJakNYByo7XuhE9b0BINJWtLsj66NvPelAfwe90-FKz9uqnMYeN-l1JSccsGoeNEEZwabq249IabpgTbWdc9mJHLxvmGAO6Pz8GauGvBpX5q4W_AqEy_6y5PWowH3nwGFS0HiebEQa0KW_h_1F_A2sAkKY</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Bashir, Shariq</creator><creator>Khattak, Akmal Saeed</creator><creator>Alshara, Mohammed Ali</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>202103</creationdate><title>Automatically transforming full length biomedical articles into search queries for retrieving related articles</title><author>Bashir, Shariq ; Khattak, Akmal Saeed ; Alshara, Mohammed Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-7cbcdcc8a04f3d7bd4f36bd4f1350d067751bd40805cf0e5926a74d27045eb3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomedical search system</topic><topic>Clinical decision support system</topic><topic>Information retrieval</topic><topic>Learn to rank</topic><topic>Related citation search</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bashir, Shariq</creatorcontrib><creatorcontrib>Khattak, Akmal Saeed</creatorcontrib><creatorcontrib>Alshara, Mohammed Ali</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Egyptian informatics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bashir, Shariq</au><au>Khattak, Akmal Saeed</au><au>Alshara, Mohammed Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatically transforming full length biomedical articles into search queries for retrieving related articles</atitle><jtitle>Egyptian informatics journal</jtitle><date>2021-03</date><risdate>2021</risdate><volume>22</volume><issue>1</issue><spage>75</spage><epage>84</epage><pages>75-84</pages><issn>1110-8665</issn><eissn>2090-4754</eissn><abstract>Searching relevant articles from medical resources is an important search task in clinical decision support system. The technical contents and long length of biomedical articles make this search task more complicated than many other search tasks. Previous research on biomedical information retrieval (IR) is typically based on keyword search. In this paper we propose a new approach. Using our approach, a user can use the full article as a query. This reduces the burden on the users and generates an effective automatic query from many more useful search features. In this novel search scenario, we explore in detail several important factors for developing a successful biomedical articles retrieval system, especially focusing on how to automatically convert an article into an effective search query. Specifically, we evaluate the performance of single features with different parameter configurations, as well as combinations of these features using the techniques of learning to rank and rank fusion. Experimental results on PubMed collection show that the introduction field is the most useful feature for transforming a query. Furthermore, our experiments showed that combining multiple features can significantly improve the effectiveness of a search system.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.eij.2020.04.004</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1110-8665
ispartof Egyptian informatics journal, 2021-03, Vol.22 (1), p.75-84
issn 1110-8665
2090-4754
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5f1cebfe744b425b98925cb2b1f489bf
source ScienceDirect®
subjects Biomedical search system
Clinical decision support system
Information retrieval
Learn to rank
Related citation search
title Automatically transforming full length biomedical articles into search queries for retrieving related articles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A09%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatically%20transforming%20full%20length%20biomedical%20articles%20into%20search%20queries%20for%20retrieving%20related%20articles&rft.jtitle=Egyptian%20informatics%20journal&rft.au=Bashir,%20Shariq&rft.date=2021-03&rft.volume=22&rft.issue=1&rft.spage=75&rft.epage=84&rft.pages=75-84&rft.issn=1110-8665&rft.eissn=2090-4754&rft_id=info:doi/10.1016/j.eij.2020.04.004&rft_dat=%3Celsevier_doaj_%3ES1110866520301183%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-7cbcdcc8a04f3d7bd4f36bd4f1350d067751bd40805cf0e5926a74d27045eb3c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true