Loading…
Automatically transforming full length biomedical articles into search queries for retrieving related articles
Searching relevant articles from medical resources is an important search task in clinical decision support system. The technical contents and long length of biomedical articles make this search task more complicated than many other search tasks. Previous research on biomedical information retrieval...
Saved in:
Published in: | Egyptian informatics journal 2021-03, Vol.22 (1), p.75-84 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c358t-7cbcdcc8a04f3d7bd4f36bd4f1350d067751bd40805cf0e5926a74d27045eb3c3 |
container_end_page | 84 |
container_issue | 1 |
container_start_page | 75 |
container_title | Egyptian informatics journal |
container_volume | 22 |
creator | Bashir, Shariq Khattak, Akmal Saeed Alshara, Mohammed Ali |
description | Searching relevant articles from medical resources is an important search task in clinical decision support system. The technical contents and long length of biomedical articles make this search task more complicated than many other search tasks. Previous research on biomedical information retrieval (IR) is typically based on keyword search. In this paper we propose a new approach. Using our approach, a user can use the full article as a query. This reduces the burden on the users and generates an effective automatic query from many more useful search features. In this novel search scenario, we explore in detail several important factors for developing a successful biomedical articles retrieval system, especially focusing on how to automatically convert an article into an effective search query. Specifically, we evaluate the performance of single features with different parameter configurations, as well as combinations of these features using the techniques of learning to rank and rank fusion. Experimental results on PubMed collection show that the introduction field is the most useful feature for transforming a query. Furthermore, our experiments showed that combining multiple features can significantly improve the effectiveness of a search system. |
doi_str_mv | 10.1016/j.eij.2020.04.004 |
format | article |
fullrecord | <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5f1cebfe744b425b98925cb2b1f489bf</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1110866520301183</els_id><doaj_id>oai_doaj_org_article_5f1cebfe744b425b98925cb2b1f489bf</doaj_id><sourcerecordid>S1110866520301183</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-7cbcdcc8a04f3d7bd4f36bd4f1350d067751bd40805cf0e5926a74d27045eb3c3</originalsourceid><addsrcrecordid>eNp9kNtKxDAQhoMouKgP4F1eoHWSJj3glYiHBcEbvQ5JOtlN6baaZBd8e1NXvDQXmQPz_8x8hFwzKBmw-mYo0Q8lBw4liBJAnJAVhw4K0UhxSlaMMSjaupbn5CrGAfKrGReyXpHpbp_mnU7e6nH8oinoKbo57Py0oW4_jnTEaZO21Ph5h_0yRXXI0yNG6qc004g62C393GPwuZe1NGDK-WGxCDjqhP2f5pKcOT1GvPqNF-T98eHt_rl4eX1a39-9FLaSbSoaa2xvbatBuKpvTJ9DvfysktBD3TSS5RJakNYByo7XuhE9b0BINJWtLsj66NvPelAfwe90-FKz9uqnMYeN-l1JSccsGoeNEEZwabq249IabpgTbWdc9mJHLxvmGAO6Pz8GauGvBpX5q4W_AqEy_6y5PWowH3nwGFS0HiebEQa0KW_h_1F_A2sAkKY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Automatically transforming full length biomedical articles into search queries for retrieving related articles</title><source>ScienceDirect®</source><creator>Bashir, Shariq ; Khattak, Akmal Saeed ; Alshara, Mohammed Ali</creator><creatorcontrib>Bashir, Shariq ; Khattak, Akmal Saeed ; Alshara, Mohammed Ali</creatorcontrib><description>Searching relevant articles from medical resources is an important search task in clinical decision support system. The technical contents and long length of biomedical articles make this search task more complicated than many other search tasks. Previous research on biomedical information retrieval (IR) is typically based on keyword search. In this paper we propose a new approach. Using our approach, a user can use the full article as a query. This reduces the burden on the users and generates an effective automatic query from many more useful search features. In this novel search scenario, we explore in detail several important factors for developing a successful biomedical articles retrieval system, especially focusing on how to automatically convert an article into an effective search query. Specifically, we evaluate the performance of single features with different parameter configurations, as well as combinations of these features using the techniques of learning to rank and rank fusion. Experimental results on PubMed collection show that the introduction field is the most useful feature for transforming a query. Furthermore, our experiments showed that combining multiple features can significantly improve the effectiveness of a search system.</description><identifier>ISSN: 1110-8665</identifier><identifier>EISSN: 2090-4754</identifier><identifier>DOI: 10.1016/j.eij.2020.04.004</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Biomedical search system ; Clinical decision support system ; Information retrieval ; Learn to rank ; Related citation search</subject><ispartof>Egyptian informatics journal, 2021-03, Vol.22 (1), p.75-84</ispartof><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c358t-7cbcdcc8a04f3d7bd4f36bd4f1350d067751bd40805cf0e5926a74d27045eb3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1110866520301183$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Bashir, Shariq</creatorcontrib><creatorcontrib>Khattak, Akmal Saeed</creatorcontrib><creatorcontrib>Alshara, Mohammed Ali</creatorcontrib><title>Automatically transforming full length biomedical articles into search queries for retrieving related articles</title><title>Egyptian informatics journal</title><description>Searching relevant articles from medical resources is an important search task in clinical decision support system. The technical contents and long length of biomedical articles make this search task more complicated than many other search tasks. Previous research on biomedical information retrieval (IR) is typically based on keyword search. In this paper we propose a new approach. Using our approach, a user can use the full article as a query. This reduces the burden on the users and generates an effective automatic query from many more useful search features. In this novel search scenario, we explore in detail several important factors for developing a successful biomedical articles retrieval system, especially focusing on how to automatically convert an article into an effective search query. Specifically, we evaluate the performance of single features with different parameter configurations, as well as combinations of these features using the techniques of learning to rank and rank fusion. Experimental results on PubMed collection show that the introduction field is the most useful feature for transforming a query. Furthermore, our experiments showed that combining multiple features can significantly improve the effectiveness of a search system.</description><subject>Biomedical search system</subject><subject>Clinical decision support system</subject><subject>Information retrieval</subject><subject>Learn to rank</subject><subject>Related citation search</subject><issn>1110-8665</issn><issn>2090-4754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kNtKxDAQhoMouKgP4F1eoHWSJj3glYiHBcEbvQ5JOtlN6baaZBd8e1NXvDQXmQPz_8x8hFwzKBmw-mYo0Q8lBw4liBJAnJAVhw4K0UhxSlaMMSjaupbn5CrGAfKrGReyXpHpbp_mnU7e6nH8oinoKbo57Py0oW4_jnTEaZO21Ph5h_0yRXXI0yNG6qc004g62C393GPwuZe1NGDK-WGxCDjqhP2f5pKcOT1GvPqNF-T98eHt_rl4eX1a39-9FLaSbSoaa2xvbatBuKpvTJ9DvfysktBD3TSS5RJakNYByo7XuhE9b0BINJWtLsj66NvPelAfwe90-FKz9uqnMYeN-l1JSccsGoeNEEZwabq249IabpgTbWdc9mJHLxvmGAO6Pz8GauGvBpX5q4W_AqEy_6y5PWowH3nwGFS0HiebEQa0KW_h_1F_A2sAkKY</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Bashir, Shariq</creator><creator>Khattak, Akmal Saeed</creator><creator>Alshara, Mohammed Ali</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>202103</creationdate><title>Automatically transforming full length biomedical articles into search queries for retrieving related articles</title><author>Bashir, Shariq ; Khattak, Akmal Saeed ; Alshara, Mohammed Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-7cbcdcc8a04f3d7bd4f36bd4f1350d067751bd40805cf0e5926a74d27045eb3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomedical search system</topic><topic>Clinical decision support system</topic><topic>Information retrieval</topic><topic>Learn to rank</topic><topic>Related citation search</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bashir, Shariq</creatorcontrib><creatorcontrib>Khattak, Akmal Saeed</creatorcontrib><creatorcontrib>Alshara, Mohammed Ali</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Egyptian informatics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bashir, Shariq</au><au>Khattak, Akmal Saeed</au><au>Alshara, Mohammed Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatically transforming full length biomedical articles into search queries for retrieving related articles</atitle><jtitle>Egyptian informatics journal</jtitle><date>2021-03</date><risdate>2021</risdate><volume>22</volume><issue>1</issue><spage>75</spage><epage>84</epage><pages>75-84</pages><issn>1110-8665</issn><eissn>2090-4754</eissn><abstract>Searching relevant articles from medical resources is an important search task in clinical decision support system. The technical contents and long length of biomedical articles make this search task more complicated than many other search tasks. Previous research on biomedical information retrieval (IR) is typically based on keyword search. In this paper we propose a new approach. Using our approach, a user can use the full article as a query. This reduces the burden on the users and generates an effective automatic query from many more useful search features. In this novel search scenario, we explore in detail several important factors for developing a successful biomedical articles retrieval system, especially focusing on how to automatically convert an article into an effective search query. Specifically, we evaluate the performance of single features with different parameter configurations, as well as combinations of these features using the techniques of learning to rank and rank fusion. Experimental results on PubMed collection show that the introduction field is the most useful feature for transforming a query. Furthermore, our experiments showed that combining multiple features can significantly improve the effectiveness of a search system.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.eij.2020.04.004</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1110-8665 |
ispartof | Egyptian informatics journal, 2021-03, Vol.22 (1), p.75-84 |
issn | 1110-8665 2090-4754 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5f1cebfe744b425b98925cb2b1f489bf |
source | ScienceDirect® |
subjects | Biomedical search system Clinical decision support system Information retrieval Learn to rank Related citation search |
title | Automatically transforming full length biomedical articles into search queries for retrieving related articles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A09%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatically%20transforming%20full%20length%20biomedical%20articles%20into%20search%20queries%20for%20retrieving%20related%20articles&rft.jtitle=Egyptian%20informatics%20journal&rft.au=Bashir,%20Shariq&rft.date=2021-03&rft.volume=22&rft.issue=1&rft.spage=75&rft.epage=84&rft.pages=75-84&rft.issn=1110-8665&rft.eissn=2090-4754&rft_id=info:doi/10.1016/j.eij.2020.04.004&rft_dat=%3Celsevier_doaj_%3ES1110866520301183%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-7cbcdcc8a04f3d7bd4f36bd4f1350d067751bd40805cf0e5926a74d27045eb3c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |