Loading…
Riemannian Geodesic Discriminant Analysis–Minimum Riemannian Mean Distance: A Robust and Effective Method Leveraging a Symmetric Positive Definite Manifold and Discriminant Algorithm for Image Set Classification
This study introduces a novel method for classifying sets of images, called Riemannian geodesic discriminant analysis–minimum Riemannian mean distance (RGDA-MRMD). This method first converts image data into symmetric positive definite (SPD) matrices, which capture important features related to the v...
Saved in:
Published in: | Mathematics (Basel) 2024-07, Vol.12 (14), p.2164 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c255t-8589045d73182c94e3780a3dede7f797e4064f0b102a29b434daedac74463a33 |
container_end_page | |
container_issue | 14 |
container_start_page | 2164 |
container_title | Mathematics (Basel) |
container_volume | 12 |
creator | Liu, Zigang El-Sousy, Fayez F. M. Larik, Nauman Ali Quan, Huan Ji, Tianyao |
description | This study introduces a novel method for classifying sets of images, called Riemannian geodesic discriminant analysis–minimum Riemannian mean distance (RGDA-MRMD). This method first converts image data into symmetric positive definite (SPD) matrices, which capture important features related to the variability within the data. These SPD matrices are then mapped onto simpler, flat spaces (tangent spaces) using a mathematical tool called the logarithm operator, which helps to reduce their complexity and dimensionality. Subsequently, regularized local Fisher discriminant analysis (RLFDA) is employed to refine these simplified data points on the tangent plane, focusing on local data structures to optimize the distances between the points and prevent overfitting. The optimized points are then transformed back into a complex, curved space (SPD manifold) using the exponential operator to enhance robustness. Finally, classification is performed using the minimum Riemannian mean distance (MRMD) algorithm, which assigns each data point to the class with the closest mean in the Riemannian space. Through experiments on the ETH-80 (Eidgenössische Technische Hochschule Zürich-80 object category), AFEW (acted facial expressions in the wild), and FPHA (first-person hand action) datasets, the proposed method demonstrates superior performance, with accuracy scores of 97.50%, 37.27%, and 88.47%, respectively. It outperforms all the comparison methods, effectively preserving the unique topological structure of the SPD matrices and significantly boosting image set classification accuracy. |
doi_str_mv | 10.3390/math12142164 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5f289990309a4354887dcd9ba60f5e23</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A803498655</galeid><doaj_id>oai_doaj_org_article_5f289990309a4354887dcd9ba60f5e23</doaj_id><sourcerecordid>A803498655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-8589045d73182c94e3780a3dede7f797e4064f0b102a29b434daedac74463a33</originalsourceid><addsrcrecordid>eNpVUttuGyEQXVWt1CjNWz8Aqa91ygK7C32znEstOWqV5H01hmGNtQsp4Eh-6z_02_oD_ZISu6pckBg0nHPmaJiqel_TS84V_TRB3tSsFqxuxavqjDHWzbry8Prk_ra6SGlLy1I1l0KdVb_uHU7gvQNPbjEYTE6TK5d0dJPz4DOZexj3yaXfP37eOe-m3UROOHdYjoLP4DV-JnNyH9a7lAl4Q66tRZ3dMxZU3gRDVviMEQbnBwLkYT9NmGMp9y0kd4BdoS0VcsGDdzaM5iDzv5txCNHlzURsiGQ5wYDkATNZjJCSs05DdsG_q95YGBNe_I3n1ePN9ePiy2z19Xa5mK9mmjVNnslGKioa0_FaMq0E8k5S4AYNdrZTHQraCkvXNWXA1FpwYQAN6E6IlgPn59XyKGsCbPunYhLivg_g-kMixKGHmJ0esW8sk0opyqkCwRshZWe0UWtoqW2QvWh9OGo9xfB9hyn327CLpfep57R8Vcu4rAvq8ogaoIg6b0OOoMs2ODkdfGlgyc8l5ULJtmkK4eORoGNIKaL9Z7Om_cvc9Kdzw_8Au6u5Yw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3084962381</pqid></control><display><type>article</type><title>Riemannian Geodesic Discriminant Analysis–Minimum Riemannian Mean Distance: A Robust and Effective Method Leveraging a Symmetric Positive Definite Manifold and Discriminant Algorithm for Image Set Classification</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Liu, Zigang ; El-Sousy, Fayez F. M. ; Larik, Nauman Ali ; Quan, Huan ; Ji, Tianyao</creator><creatorcontrib>Liu, Zigang ; El-Sousy, Fayez F. M. ; Larik, Nauman Ali ; Quan, Huan ; Ji, Tianyao</creatorcontrib><description>This study introduces a novel method for classifying sets of images, called Riemannian geodesic discriminant analysis–minimum Riemannian mean distance (RGDA-MRMD). This method first converts image data into symmetric positive definite (SPD) matrices, which capture important features related to the variability within the data. These SPD matrices are then mapped onto simpler, flat spaces (tangent spaces) using a mathematical tool called the logarithm operator, which helps to reduce their complexity and dimensionality. Subsequently, regularized local Fisher discriminant analysis (RLFDA) is employed to refine these simplified data points on the tangent plane, focusing on local data structures to optimize the distances between the points and prevent overfitting. The optimized points are then transformed back into a complex, curved space (SPD manifold) using the exponential operator to enhance robustness. Finally, classification is performed using the minimum Riemannian mean distance (MRMD) algorithm, which assigns each data point to the class with the closest mean in the Riemannian space. Through experiments on the ETH-80 (Eidgenössische Technische Hochschule Zürich-80 object category), AFEW (acted facial expressions in the wild), and FPHA (first-person hand action) datasets, the proposed method demonstrates superior performance, with accuracy scores of 97.50%, 37.27%, and 88.47%, respectively. It outperforms all the comparison methods, effectively preserving the unique topological structure of the SPD matrices and significantly boosting image set classification accuracy.</description><identifier>ISSN: 2227-7390</identifier><identifier>EISSN: 2227-7390</identifier><identifier>DOI: 10.3390/math12142164</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Classification ; Complexity ; Data analysis ; Data points ; Data structures ; Deep learning ; Discriminant analysis ; Euclidean space ; Exploitation ; Fisher, Ronald Aylmer ; Hilbert space ; image set classification ; Machine learning ; Manifolds (mathematics) ; Matrices (mathematics) ; Methods ; minimum Riemannian mean distance ; Operators (mathematics) ; Performance evaluation ; regularized local Fisher discriminant analysis ; Riemannian manifold ; symmetric positive definite matrices ; tangent space</subject><ispartof>Mathematics (Basel), 2024-07, Vol.12 (14), p.2164</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c255t-8589045d73182c94e3780a3dede7f797e4064f0b102a29b434daedac74463a33</cites><orcidid>0000-0001-9780-8249</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3084962381/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3084962381?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,25736,27907,27908,36995,44573,74877</link.rule.ids></links><search><creatorcontrib>Liu, Zigang</creatorcontrib><creatorcontrib>El-Sousy, Fayez F. M.</creatorcontrib><creatorcontrib>Larik, Nauman Ali</creatorcontrib><creatorcontrib>Quan, Huan</creatorcontrib><creatorcontrib>Ji, Tianyao</creatorcontrib><title>Riemannian Geodesic Discriminant Analysis–Minimum Riemannian Mean Distance: A Robust and Effective Method Leveraging a Symmetric Positive Definite Manifold and Discriminant Algorithm for Image Set Classification</title><title>Mathematics (Basel)</title><description>This study introduces a novel method for classifying sets of images, called Riemannian geodesic discriminant analysis–minimum Riemannian mean distance (RGDA-MRMD). This method first converts image data into symmetric positive definite (SPD) matrices, which capture important features related to the variability within the data. These SPD matrices are then mapped onto simpler, flat spaces (tangent spaces) using a mathematical tool called the logarithm operator, which helps to reduce their complexity and dimensionality. Subsequently, regularized local Fisher discriminant analysis (RLFDA) is employed to refine these simplified data points on the tangent plane, focusing on local data structures to optimize the distances between the points and prevent overfitting. The optimized points are then transformed back into a complex, curved space (SPD manifold) using the exponential operator to enhance robustness. Finally, classification is performed using the minimum Riemannian mean distance (MRMD) algorithm, which assigns each data point to the class with the closest mean in the Riemannian space. Through experiments on the ETH-80 (Eidgenössische Technische Hochschule Zürich-80 object category), AFEW (acted facial expressions in the wild), and FPHA (first-person hand action) datasets, the proposed method demonstrates superior performance, with accuracy scores of 97.50%, 37.27%, and 88.47%, respectively. It outperforms all the comparison methods, effectively preserving the unique topological structure of the SPD matrices and significantly boosting image set classification accuracy.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Complexity</subject><subject>Data analysis</subject><subject>Data points</subject><subject>Data structures</subject><subject>Deep learning</subject><subject>Discriminant analysis</subject><subject>Euclidean space</subject><subject>Exploitation</subject><subject>Fisher, Ronald Aylmer</subject><subject>Hilbert space</subject><subject>image set classification</subject><subject>Machine learning</subject><subject>Manifolds (mathematics)</subject><subject>Matrices (mathematics)</subject><subject>Methods</subject><subject>minimum Riemannian mean distance</subject><subject>Operators (mathematics)</subject><subject>Performance evaluation</subject><subject>regularized local Fisher discriminant analysis</subject><subject>Riemannian manifold</subject><subject>symmetric positive definite matrices</subject><subject>tangent space</subject><issn>2227-7390</issn><issn>2227-7390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVUttuGyEQXVWt1CjNWz8Aqa91ygK7C32znEstOWqV5H01hmGNtQsp4Eh-6z_02_oD_ZISu6pckBg0nHPmaJiqel_TS84V_TRB3tSsFqxuxavqjDHWzbry8Prk_ra6SGlLy1I1l0KdVb_uHU7gvQNPbjEYTE6TK5d0dJPz4DOZexj3yaXfP37eOe-m3UROOHdYjoLP4DV-JnNyH9a7lAl4Q66tRZ3dMxZU3gRDVviMEQbnBwLkYT9NmGMp9y0kd4BdoS0VcsGDdzaM5iDzv5txCNHlzURsiGQ5wYDkATNZjJCSs05DdsG_q95YGBNe_I3n1ePN9ePiy2z19Xa5mK9mmjVNnslGKioa0_FaMq0E8k5S4AYNdrZTHQraCkvXNWXA1FpwYQAN6E6IlgPn59XyKGsCbPunYhLivg_g-kMixKGHmJ0esW8sk0opyqkCwRshZWe0UWtoqW2QvWh9OGo9xfB9hyn327CLpfep57R8Vcu4rAvq8ogaoIg6b0OOoMs2ODkdfGlgyc8l5ULJtmkK4eORoGNIKaL9Z7Om_cvc9Kdzw_8Au6u5Yw</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Liu, Zigang</creator><creator>El-Sousy, Fayez F. M.</creator><creator>Larik, Nauman Ali</creator><creator>Quan, Huan</creator><creator>Ji, Tianyao</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9780-8249</orcidid></search><sort><creationdate>20240701</creationdate><title>Riemannian Geodesic Discriminant Analysis–Minimum Riemannian Mean Distance: A Robust and Effective Method Leveraging a Symmetric Positive Definite Manifold and Discriminant Algorithm for Image Set Classification</title><author>Liu, Zigang ; El-Sousy, Fayez F. M. ; Larik, Nauman Ali ; Quan, Huan ; Ji, Tianyao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-8589045d73182c94e3780a3dede7f797e4064f0b102a29b434daedac74463a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Complexity</topic><topic>Data analysis</topic><topic>Data points</topic><topic>Data structures</topic><topic>Deep learning</topic><topic>Discriminant analysis</topic><topic>Euclidean space</topic><topic>Exploitation</topic><topic>Fisher, Ronald Aylmer</topic><topic>Hilbert space</topic><topic>image set classification</topic><topic>Machine learning</topic><topic>Manifolds (mathematics)</topic><topic>Matrices (mathematics)</topic><topic>Methods</topic><topic>minimum Riemannian mean distance</topic><topic>Operators (mathematics)</topic><topic>Performance evaluation</topic><topic>regularized local Fisher discriminant analysis</topic><topic>Riemannian manifold</topic><topic>symmetric positive definite matrices</topic><topic>tangent space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zigang</creatorcontrib><creatorcontrib>El-Sousy, Fayez F. M.</creatorcontrib><creatorcontrib>Larik, Nauman Ali</creatorcontrib><creatorcontrib>Quan, Huan</creatorcontrib><creatorcontrib>Ji, Tianyao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zigang</au><au>El-Sousy, Fayez F. M.</au><au>Larik, Nauman Ali</au><au>Quan, Huan</au><au>Ji, Tianyao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Riemannian Geodesic Discriminant Analysis–Minimum Riemannian Mean Distance: A Robust and Effective Method Leveraging a Symmetric Positive Definite Manifold and Discriminant Algorithm for Image Set Classification</atitle><jtitle>Mathematics (Basel)</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>12</volume><issue>14</issue><spage>2164</spage><pages>2164-</pages><issn>2227-7390</issn><eissn>2227-7390</eissn><abstract>This study introduces a novel method for classifying sets of images, called Riemannian geodesic discriminant analysis–minimum Riemannian mean distance (RGDA-MRMD). This method first converts image data into symmetric positive definite (SPD) matrices, which capture important features related to the variability within the data. These SPD matrices are then mapped onto simpler, flat spaces (tangent spaces) using a mathematical tool called the logarithm operator, which helps to reduce their complexity and dimensionality. Subsequently, regularized local Fisher discriminant analysis (RLFDA) is employed to refine these simplified data points on the tangent plane, focusing on local data structures to optimize the distances between the points and prevent overfitting. The optimized points are then transformed back into a complex, curved space (SPD manifold) using the exponential operator to enhance robustness. Finally, classification is performed using the minimum Riemannian mean distance (MRMD) algorithm, which assigns each data point to the class with the closest mean in the Riemannian space. Through experiments on the ETH-80 (Eidgenössische Technische Hochschule Zürich-80 object category), AFEW (acted facial expressions in the wild), and FPHA (first-person hand action) datasets, the proposed method demonstrates superior performance, with accuracy scores of 97.50%, 37.27%, and 88.47%, respectively. It outperforms all the comparison methods, effectively preserving the unique topological structure of the SPD matrices and significantly boosting image set classification accuracy.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/math12142164</doi><orcidid>https://orcid.org/0000-0001-9780-8249</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-7390 |
ispartof | Mathematics (Basel), 2024-07, Vol.12 (14), p.2164 |
issn | 2227-7390 2227-7390 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5f289990309a4354887dcd9ba60f5e23 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Accuracy Algorithms Classification Complexity Data analysis Data points Data structures Deep learning Discriminant analysis Euclidean space Exploitation Fisher, Ronald Aylmer Hilbert space image set classification Machine learning Manifolds (mathematics) Matrices (mathematics) Methods minimum Riemannian mean distance Operators (mathematics) Performance evaluation regularized local Fisher discriminant analysis Riemannian manifold symmetric positive definite matrices tangent space |
title | Riemannian Geodesic Discriminant Analysis–Minimum Riemannian Mean Distance: A Robust and Effective Method Leveraging a Symmetric Positive Definite Manifold and Discriminant Algorithm for Image Set Classification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A11%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Riemannian%20Geodesic%20Discriminant%20Analysis%E2%80%93Minimum%20Riemannian%20Mean%20Distance:%20A%20Robust%20and%20Effective%20Method%20Leveraging%20a%20Symmetric%20Positive%20Definite%20Manifold%20and%20Discriminant%20Algorithm%20for%20Image%20Set%20Classification&rft.jtitle=Mathematics%20(Basel)&rft.au=Liu,%20Zigang&rft.date=2024-07-01&rft.volume=12&rft.issue=14&rft.spage=2164&rft.pages=2164-&rft.issn=2227-7390&rft.eissn=2227-7390&rft_id=info:doi/10.3390/math12142164&rft_dat=%3Cgale_doaj_%3EA803498655%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c255t-8589045d73182c94e3780a3dede7f797e4064f0b102a29b434daedac74463a33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3084962381&rft_id=info:pmid/&rft_galeid=A803498655&rfr_iscdi=true |