Loading…
Development of Pavement Distress Deterioration Prediction Models for Urban Road Network Using Genetic Programming
The objective of the present study is to develop models to predict the deterioration of pavement distress of the urban road network. Genetic programming (GP) has been used to develop five models for the prediction of pavement distress: Model 1 for the cracking progression, Model 2 for the ravelling...
Saved in:
Published in: | Advances in civil engineering 2018-01, Vol.2018 (2018), p.1-15 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c545t-7b701f5cf310495903c57a377d1518cbcd3cc0d6b2b9c8da19f3b7e0bff2d1633 |
---|---|
cites | cdi_FETCH-LOGICAL-c545t-7b701f5cf310495903c57a377d1518cbcd3cc0d6b2b9c8da19f3b7e0bff2d1633 |
container_end_page | 15 |
container_issue | 2018 |
container_start_page | 1 |
container_title | Advances in civil engineering |
container_volume | 2018 |
creator | Chopra, Palika Kwatra, Naveen Parida, Manoranjan Chopra, Tanuj |
description | The objective of the present study is to develop models to predict the deterioration of pavement distress of the urban road network. Genetic programming (GP) has been used to develop five models for the prediction of pavement distress: Model 1 for the cracking progression, Model 2 for the ravelling progression, Model 3 for the pothole progression, Model 4 for the rutting progression, and Model 5 for the roughness progression. The data have been collected from the roads of Patiala City, Punjab, India; during the years 2012–2015, the network of 16 roads have been selected for the data collection purposes. The data have been divided into two sets, that is, training dataset (data collected during the years 2012 and 2013) and validation dataset (data collected during the years 2014 and 2015). The two fitness functions have been used for the evaluation of the models, that is, coefficient of determination (R2) and root mean square error (RMSE), and it is inferred that GP models predict with high accuracy for pavement distress and help the decision makers for adequate and timely fund allocations for preservation of the urban road network. |
doi_str_mv | 10.1155/2018/1253108 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5f2a7730bff742749adbe99415a31927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5f2a7730bff742749adbe99415a31927</doaj_id><sourcerecordid>2023378591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-7b701f5cf310495903c57a377d1518cbcd3cc0d6b2b9c8da19f3b7e0bff2d1633</originalsourceid><addsrcrecordid>eNqFkc1PGzEQxVdVkYoot54rSz22KR57HdvHirQUCQpC5Gz5Y5yaJutgL6D-93WyiB45zdPoN29m9LruA9CvAEKcMArqBJjgQNWb7hDmSs4U1f3bF63m77rjWpOjfS-ZYgwOu_sFPuI6bzc4jCRHcm0fca8XqY4FayULHLGkXOyY8kCuC4bk9_IyB1xXEnMhy-LsQG6yDeQXjk-5_CHLmoYVOcMBx-TbWF4Vu9m03vvuINp1xePnetQtf3y_Pf05u7g6Oz_9djHzohfjTDpJIQof2z-9FppyL6TlUgYQoLzzgXtPw9wxp70KFnTkTiJ1MbIAc86PuvPJN2R7Z7YlbWz5a7JNZt_IZWVsabet0YjIrJR8Nyt7Jnttg0OtexCWg2ayeX2avLYl3z9gHc1dfihDO98wyjiXSmho1JeJ8iXXWjC-bAVqdhmZXUbmOaOGf57w32kI9im9Rn-caGwMRvufbiznjP8DAS2a6A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2023378591</pqid></control><display><type>article</type><title>Development of Pavement Distress Deterioration Prediction Models for Urban Road Network Using Genetic Programming</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Chopra, Palika ; Kwatra, Naveen ; Parida, Manoranjan ; Chopra, Tanuj</creator><contributor>Canestrari, Francesco ; Francesco Canestrari</contributor><creatorcontrib>Chopra, Palika ; Kwatra, Naveen ; Parida, Manoranjan ; Chopra, Tanuj ; Canestrari, Francesco ; Francesco Canestrari</creatorcontrib><description>The objective of the present study is to develop models to predict the deterioration of pavement distress of the urban road network. Genetic programming (GP) has been used to develop five models for the prediction of pavement distress: Model 1 for the cracking progression, Model 2 for the ravelling progression, Model 3 for the pothole progression, Model 4 for the rutting progression, and Model 5 for the roughness progression. The data have been collected from the roads of Patiala City, Punjab, India; during the years 2012–2015, the network of 16 roads have been selected for the data collection purposes. The data have been divided into two sets, that is, training dataset (data collected during the years 2012 and 2013) and validation dataset (data collected during the years 2014 and 2015). The two fitness functions have been used for the evaluation of the models, that is, coefficient of determination (R2) and root mean square error (RMSE), and it is inferred that GP models predict with high accuracy for pavement distress and help the decision makers for adequate and timely fund allocations for preservation of the urban road network.</description><identifier>ISSN: 1687-8086</identifier><identifier>EISSN: 1687-8094</identifier><identifier>DOI: 10.1155/2018/1253108</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Allocations ; Civil engineering ; Data collection ; Deterioration ; Developing countries ; Engineering ; Fitness ; Genetic algorithms ; LDCs ; Maintenance management ; Mathematical models ; Methods ; Model accuracy ; Neural networks ; Roads ; Roads & highways ; Root-mean-square errors ; Transportation planning</subject><ispartof>Advances in civil engineering, 2018-01, Vol.2018 (2018), p.1-15</ispartof><rights>Copyright © 2018 Tanuj Chopra et al.</rights><rights>Copyright © 2018 Tanuj Chopra et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-7b701f5cf310495903c57a377d1518cbcd3cc0d6b2b9c8da19f3b7e0bff2d1633</citedby><cites>FETCH-LOGICAL-c545t-7b701f5cf310495903c57a377d1518cbcd3cc0d6b2b9c8da19f3b7e0bff2d1633</cites><orcidid>0000-0003-3982-363X ; 0000-0001-6897-9938</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2023378591/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2023378591?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Canestrari, Francesco</contributor><contributor>Francesco Canestrari</contributor><creatorcontrib>Chopra, Palika</creatorcontrib><creatorcontrib>Kwatra, Naveen</creatorcontrib><creatorcontrib>Parida, Manoranjan</creatorcontrib><creatorcontrib>Chopra, Tanuj</creatorcontrib><title>Development of Pavement Distress Deterioration Prediction Models for Urban Road Network Using Genetic Programming</title><title>Advances in civil engineering</title><description>The objective of the present study is to develop models to predict the deterioration of pavement distress of the urban road network. Genetic programming (GP) has been used to develop five models for the prediction of pavement distress: Model 1 for the cracking progression, Model 2 for the ravelling progression, Model 3 for the pothole progression, Model 4 for the rutting progression, and Model 5 for the roughness progression. The data have been collected from the roads of Patiala City, Punjab, India; during the years 2012–2015, the network of 16 roads have been selected for the data collection purposes. The data have been divided into two sets, that is, training dataset (data collected during the years 2012 and 2013) and validation dataset (data collected during the years 2014 and 2015). The two fitness functions have been used for the evaluation of the models, that is, coefficient of determination (R2) and root mean square error (RMSE), and it is inferred that GP models predict with high accuracy for pavement distress and help the decision makers for adequate and timely fund allocations for preservation of the urban road network.</description><subject>Allocations</subject><subject>Civil engineering</subject><subject>Data collection</subject><subject>Deterioration</subject><subject>Developing countries</subject><subject>Engineering</subject><subject>Fitness</subject><subject>Genetic algorithms</subject><subject>LDCs</subject><subject>Maintenance management</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Model accuracy</subject><subject>Neural networks</subject><subject>Roads</subject><subject>Roads & highways</subject><subject>Root-mean-square errors</subject><subject>Transportation planning</subject><issn>1687-8086</issn><issn>1687-8094</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkc1PGzEQxVdVkYoot54rSz22KR57HdvHirQUCQpC5Gz5Y5yaJutgL6D-93WyiB45zdPoN29m9LruA9CvAEKcMArqBJjgQNWb7hDmSs4U1f3bF63m77rjWpOjfS-ZYgwOu_sFPuI6bzc4jCRHcm0fca8XqY4FayULHLGkXOyY8kCuC4bk9_IyB1xXEnMhy-LsQG6yDeQXjk-5_CHLmoYVOcMBx-TbWF4Vu9m03vvuINp1xePnetQtf3y_Pf05u7g6Oz_9djHzohfjTDpJIQof2z-9FppyL6TlUgYQoLzzgXtPw9wxp70KFnTkTiJ1MbIAc86PuvPJN2R7Z7YlbWz5a7JNZt_IZWVsabet0YjIrJR8Nyt7Jnttg0OtexCWg2ayeX2avLYl3z9gHc1dfihDO98wyjiXSmho1JeJ8iXXWjC-bAVqdhmZXUbmOaOGf57w32kI9im9Rn-caGwMRvufbiznjP8DAS2a6A</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Chopra, Palika</creator><creator>Kwatra, Naveen</creator><creator>Parida, Manoranjan</creator><creator>Chopra, Tanuj</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3982-363X</orcidid><orcidid>https://orcid.org/0000-0001-6897-9938</orcidid></search><sort><creationdate>20180101</creationdate><title>Development of Pavement Distress Deterioration Prediction Models for Urban Road Network Using Genetic Programming</title><author>Chopra, Palika ; Kwatra, Naveen ; Parida, Manoranjan ; Chopra, Tanuj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-7b701f5cf310495903c57a377d1518cbcd3cc0d6b2b9c8da19f3b7e0bff2d1633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Allocations</topic><topic>Civil engineering</topic><topic>Data collection</topic><topic>Deterioration</topic><topic>Developing countries</topic><topic>Engineering</topic><topic>Fitness</topic><topic>Genetic algorithms</topic><topic>LDCs</topic><topic>Maintenance management</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Model accuracy</topic><topic>Neural networks</topic><topic>Roads</topic><topic>Roads & highways</topic><topic>Root-mean-square errors</topic><topic>Transportation planning</topic><toplevel>online_resources</toplevel><creatorcontrib>Chopra, Palika</creatorcontrib><creatorcontrib>Kwatra, Naveen</creatorcontrib><creatorcontrib>Parida, Manoranjan</creatorcontrib><creatorcontrib>Chopra, Tanuj</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Advances in civil engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chopra, Palika</au><au>Kwatra, Naveen</au><au>Parida, Manoranjan</au><au>Chopra, Tanuj</au><au>Canestrari, Francesco</au><au>Francesco Canestrari</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of Pavement Distress Deterioration Prediction Models for Urban Road Network Using Genetic Programming</atitle><jtitle>Advances in civil engineering</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1687-8086</issn><eissn>1687-8094</eissn><abstract>The objective of the present study is to develop models to predict the deterioration of pavement distress of the urban road network. Genetic programming (GP) has been used to develop five models for the prediction of pavement distress: Model 1 for the cracking progression, Model 2 for the ravelling progression, Model 3 for the pothole progression, Model 4 for the rutting progression, and Model 5 for the roughness progression. The data have been collected from the roads of Patiala City, Punjab, India; during the years 2012–2015, the network of 16 roads have been selected for the data collection purposes. The data have been divided into two sets, that is, training dataset (data collected during the years 2012 and 2013) and validation dataset (data collected during the years 2014 and 2015). The two fitness functions have been used for the evaluation of the models, that is, coefficient of determination (R2) and root mean square error (RMSE), and it is inferred that GP models predict with high accuracy for pavement distress and help the decision makers for adequate and timely fund allocations for preservation of the urban road network.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/1253108</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3982-363X</orcidid><orcidid>https://orcid.org/0000-0001-6897-9938</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-8086 |
ispartof | Advances in civil engineering, 2018-01, Vol.2018 (2018), p.1-15 |
issn | 1687-8086 1687-8094 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5f2a7730bff742749adbe99415a31927 |
source | Wiley Online Library Open Access; Publicly Available Content Database |
subjects | Allocations Civil engineering Data collection Deterioration Developing countries Engineering Fitness Genetic algorithms LDCs Maintenance management Mathematical models Methods Model accuracy Neural networks Roads Roads & highways Root-mean-square errors Transportation planning |
title | Development of Pavement Distress Deterioration Prediction Models for Urban Road Network Using Genetic Programming |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A38%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20Pavement%20Distress%20Deterioration%20Prediction%20Models%20for%20Urban%20Road%20Network%20Using%20Genetic%20Programming&rft.jtitle=Advances%20in%20civil%20engineering&rft.au=Chopra,%20Palika&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1687-8086&rft.eissn=1687-8094&rft_id=info:doi/10.1155/2018/1253108&rft_dat=%3Cproquest_doaj_%3E2023378591%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c545t-7b701f5cf310495903c57a377d1518cbcd3cc0d6b2b9c8da19f3b7e0bff2d1633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2023378591&rft_id=info:pmid/&rfr_iscdi=true |