Loading…

Development of Pavement Distress Deterioration Prediction Models for Urban Road Network Using Genetic Programming

The objective of the present study is to develop models to predict the deterioration of pavement distress of the urban road network. Genetic programming (GP) has been used to develop five models for the prediction of pavement distress: Model 1 for the cracking progression, Model 2 for the ravelling...

Full description

Saved in:
Bibliographic Details
Published in:Advances in civil engineering 2018-01, Vol.2018 (2018), p.1-15
Main Authors: Chopra, Palika, Kwatra, Naveen, Parida, Manoranjan, Chopra, Tanuj
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c545t-7b701f5cf310495903c57a377d1518cbcd3cc0d6b2b9c8da19f3b7e0bff2d1633
cites cdi_FETCH-LOGICAL-c545t-7b701f5cf310495903c57a377d1518cbcd3cc0d6b2b9c8da19f3b7e0bff2d1633
container_end_page 15
container_issue 2018
container_start_page 1
container_title Advances in civil engineering
container_volume 2018
creator Chopra, Palika
Kwatra, Naveen
Parida, Manoranjan
Chopra, Tanuj
description The objective of the present study is to develop models to predict the deterioration of pavement distress of the urban road network. Genetic programming (GP) has been used to develop five models for the prediction of pavement distress: Model 1 for the cracking progression, Model 2 for the ravelling progression, Model 3 for the pothole progression, Model 4 for the rutting progression, and Model 5 for the roughness progression. The data have been collected from the roads of Patiala City, Punjab, India; during the years 2012–2015, the network of 16 roads have been selected for the data collection purposes. The data have been divided into two sets, that is, training dataset (data collected during the years 2012 and 2013) and validation dataset (data collected during the years 2014 and 2015). The two fitness functions have been used for the evaluation of the models, that is, coefficient of determination (R2) and root mean square error (RMSE), and it is inferred that GP models predict with high accuracy for pavement distress and help the decision makers for adequate and timely fund allocations for preservation of the urban road network.
doi_str_mv 10.1155/2018/1253108
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5f2a7730bff742749adbe99415a31927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5f2a7730bff742749adbe99415a31927</doaj_id><sourcerecordid>2023378591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-7b701f5cf310495903c57a377d1518cbcd3cc0d6b2b9c8da19f3b7e0bff2d1633</originalsourceid><addsrcrecordid>eNqFkc1PGzEQxVdVkYoot54rSz22KR57HdvHirQUCQpC5Gz5Y5yaJutgL6D-93WyiB45zdPoN29m9LruA9CvAEKcMArqBJjgQNWb7hDmSs4U1f3bF63m77rjWpOjfS-ZYgwOu_sFPuI6bzc4jCRHcm0fca8XqY4FayULHLGkXOyY8kCuC4bk9_IyB1xXEnMhy-LsQG6yDeQXjk-5_CHLmoYVOcMBx-TbWF4Vu9m03vvuINp1xePnetQtf3y_Pf05u7g6Oz_9djHzohfjTDpJIQof2z-9FppyL6TlUgYQoLzzgXtPw9wxp70KFnTkTiJ1MbIAc86PuvPJN2R7Z7YlbWz5a7JNZt_IZWVsabet0YjIrJR8Nyt7Jnttg0OtexCWg2ayeX2avLYl3z9gHc1dfihDO98wyjiXSmho1JeJ8iXXWjC-bAVqdhmZXUbmOaOGf57w32kI9im9Rn-caGwMRvufbiznjP8DAS2a6A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2023378591</pqid></control><display><type>article</type><title>Development of Pavement Distress Deterioration Prediction Models for Urban Road Network Using Genetic Programming</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Chopra, Palika ; Kwatra, Naveen ; Parida, Manoranjan ; Chopra, Tanuj</creator><contributor>Canestrari, Francesco ; Francesco Canestrari</contributor><creatorcontrib>Chopra, Palika ; Kwatra, Naveen ; Parida, Manoranjan ; Chopra, Tanuj ; Canestrari, Francesco ; Francesco Canestrari</creatorcontrib><description>The objective of the present study is to develop models to predict the deterioration of pavement distress of the urban road network. Genetic programming (GP) has been used to develop five models for the prediction of pavement distress: Model 1 for the cracking progression, Model 2 for the ravelling progression, Model 3 for the pothole progression, Model 4 for the rutting progression, and Model 5 for the roughness progression. The data have been collected from the roads of Patiala City, Punjab, India; during the years 2012–2015, the network of 16 roads have been selected for the data collection purposes. The data have been divided into two sets, that is, training dataset (data collected during the years 2012 and 2013) and validation dataset (data collected during the years 2014 and 2015). The two fitness functions have been used for the evaluation of the models, that is, coefficient of determination (R2) and root mean square error (RMSE), and it is inferred that GP models predict with high accuracy for pavement distress and help the decision makers for adequate and timely fund allocations for preservation of the urban road network.</description><identifier>ISSN: 1687-8086</identifier><identifier>EISSN: 1687-8094</identifier><identifier>DOI: 10.1155/2018/1253108</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Allocations ; Civil engineering ; Data collection ; Deterioration ; Developing countries ; Engineering ; Fitness ; Genetic algorithms ; LDCs ; Maintenance management ; Mathematical models ; Methods ; Model accuracy ; Neural networks ; Roads ; Roads &amp; highways ; Root-mean-square errors ; Transportation planning</subject><ispartof>Advances in civil engineering, 2018-01, Vol.2018 (2018), p.1-15</ispartof><rights>Copyright © 2018 Tanuj Chopra et al.</rights><rights>Copyright © 2018 Tanuj Chopra et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-7b701f5cf310495903c57a377d1518cbcd3cc0d6b2b9c8da19f3b7e0bff2d1633</citedby><cites>FETCH-LOGICAL-c545t-7b701f5cf310495903c57a377d1518cbcd3cc0d6b2b9c8da19f3b7e0bff2d1633</cites><orcidid>0000-0003-3982-363X ; 0000-0001-6897-9938</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2023378591/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2023378591?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Canestrari, Francesco</contributor><contributor>Francesco Canestrari</contributor><creatorcontrib>Chopra, Palika</creatorcontrib><creatorcontrib>Kwatra, Naveen</creatorcontrib><creatorcontrib>Parida, Manoranjan</creatorcontrib><creatorcontrib>Chopra, Tanuj</creatorcontrib><title>Development of Pavement Distress Deterioration Prediction Models for Urban Road Network Using Genetic Programming</title><title>Advances in civil engineering</title><description>The objective of the present study is to develop models to predict the deterioration of pavement distress of the urban road network. Genetic programming (GP) has been used to develop five models for the prediction of pavement distress: Model 1 for the cracking progression, Model 2 for the ravelling progression, Model 3 for the pothole progression, Model 4 for the rutting progression, and Model 5 for the roughness progression. The data have been collected from the roads of Patiala City, Punjab, India; during the years 2012–2015, the network of 16 roads have been selected for the data collection purposes. The data have been divided into two sets, that is, training dataset (data collected during the years 2012 and 2013) and validation dataset (data collected during the years 2014 and 2015). The two fitness functions have been used for the evaluation of the models, that is, coefficient of determination (R2) and root mean square error (RMSE), and it is inferred that GP models predict with high accuracy for pavement distress and help the decision makers for adequate and timely fund allocations for preservation of the urban road network.</description><subject>Allocations</subject><subject>Civil engineering</subject><subject>Data collection</subject><subject>Deterioration</subject><subject>Developing countries</subject><subject>Engineering</subject><subject>Fitness</subject><subject>Genetic algorithms</subject><subject>LDCs</subject><subject>Maintenance management</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Model accuracy</subject><subject>Neural networks</subject><subject>Roads</subject><subject>Roads &amp; highways</subject><subject>Root-mean-square errors</subject><subject>Transportation planning</subject><issn>1687-8086</issn><issn>1687-8094</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkc1PGzEQxVdVkYoot54rSz22KR57HdvHirQUCQpC5Gz5Y5yaJutgL6D-93WyiB45zdPoN29m9LruA9CvAEKcMArqBJjgQNWb7hDmSs4U1f3bF63m77rjWpOjfS-ZYgwOu_sFPuI6bzc4jCRHcm0fca8XqY4FayULHLGkXOyY8kCuC4bk9_IyB1xXEnMhy-LsQG6yDeQXjk-5_CHLmoYVOcMBx-TbWF4Vu9m03vvuINp1xePnetQtf3y_Pf05u7g6Oz_9djHzohfjTDpJIQof2z-9FppyL6TlUgYQoLzzgXtPw9wxp70KFnTkTiJ1MbIAc86PuvPJN2R7Z7YlbWz5a7JNZt_IZWVsabet0YjIrJR8Nyt7Jnttg0OtexCWg2ayeX2avLYl3z9gHc1dfihDO98wyjiXSmho1JeJ8iXXWjC-bAVqdhmZXUbmOaOGf57w32kI9im9Rn-caGwMRvufbiznjP8DAS2a6A</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Chopra, Palika</creator><creator>Kwatra, Naveen</creator><creator>Parida, Manoranjan</creator><creator>Chopra, Tanuj</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3982-363X</orcidid><orcidid>https://orcid.org/0000-0001-6897-9938</orcidid></search><sort><creationdate>20180101</creationdate><title>Development of Pavement Distress Deterioration Prediction Models for Urban Road Network Using Genetic Programming</title><author>Chopra, Palika ; Kwatra, Naveen ; Parida, Manoranjan ; Chopra, Tanuj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-7b701f5cf310495903c57a377d1518cbcd3cc0d6b2b9c8da19f3b7e0bff2d1633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Allocations</topic><topic>Civil engineering</topic><topic>Data collection</topic><topic>Deterioration</topic><topic>Developing countries</topic><topic>Engineering</topic><topic>Fitness</topic><topic>Genetic algorithms</topic><topic>LDCs</topic><topic>Maintenance management</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Model accuracy</topic><topic>Neural networks</topic><topic>Roads</topic><topic>Roads &amp; highways</topic><topic>Root-mean-square errors</topic><topic>Transportation planning</topic><toplevel>online_resources</toplevel><creatorcontrib>Chopra, Palika</creatorcontrib><creatorcontrib>Kwatra, Naveen</creatorcontrib><creatorcontrib>Parida, Manoranjan</creatorcontrib><creatorcontrib>Chopra, Tanuj</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Advances in civil engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chopra, Palika</au><au>Kwatra, Naveen</au><au>Parida, Manoranjan</au><au>Chopra, Tanuj</au><au>Canestrari, Francesco</au><au>Francesco Canestrari</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of Pavement Distress Deterioration Prediction Models for Urban Road Network Using Genetic Programming</atitle><jtitle>Advances in civil engineering</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1687-8086</issn><eissn>1687-8094</eissn><abstract>The objective of the present study is to develop models to predict the deterioration of pavement distress of the urban road network. Genetic programming (GP) has been used to develop five models for the prediction of pavement distress: Model 1 for the cracking progression, Model 2 for the ravelling progression, Model 3 for the pothole progression, Model 4 for the rutting progression, and Model 5 for the roughness progression. The data have been collected from the roads of Patiala City, Punjab, India; during the years 2012–2015, the network of 16 roads have been selected for the data collection purposes. The data have been divided into two sets, that is, training dataset (data collected during the years 2012 and 2013) and validation dataset (data collected during the years 2014 and 2015). The two fitness functions have been used for the evaluation of the models, that is, coefficient of determination (R2) and root mean square error (RMSE), and it is inferred that GP models predict with high accuracy for pavement distress and help the decision makers for adequate and timely fund allocations for preservation of the urban road network.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/1253108</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3982-363X</orcidid><orcidid>https://orcid.org/0000-0001-6897-9938</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-8086
ispartof Advances in civil engineering, 2018-01, Vol.2018 (2018), p.1-15
issn 1687-8086
1687-8094
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5f2a7730bff742749adbe99415a31927
source Wiley Online Library Open Access; Publicly Available Content Database
subjects Allocations
Civil engineering
Data collection
Deterioration
Developing countries
Engineering
Fitness
Genetic algorithms
LDCs
Maintenance management
Mathematical models
Methods
Model accuracy
Neural networks
Roads
Roads & highways
Root-mean-square errors
Transportation planning
title Development of Pavement Distress Deterioration Prediction Models for Urban Road Network Using Genetic Programming
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T23%3A38%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20Pavement%20Distress%20Deterioration%20Prediction%20Models%20for%20Urban%20Road%20Network%20Using%20Genetic%20Programming&rft.jtitle=Advances%20in%20civil%20engineering&rft.au=Chopra,%20Palika&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1687-8086&rft.eissn=1687-8094&rft_id=info:doi/10.1155/2018/1253108&rft_dat=%3Cproquest_doaj_%3E2023378591%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c545t-7b701f5cf310495903c57a377d1518cbcd3cc0d6b2b9c8da19f3b7e0bff2d1633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2023378591&rft_id=info:pmid/&rfr_iscdi=true