Loading…

Effect of Rotation Age and Thinning Regime on Visual and Structural Lumber Grades of Douglas-Fir Logs

Douglas-fir, the most important timber species in the Pacific Northwest, US (PNW), has high stiffness and strength. Growing it in plantations on short rotations since the 1980s has led to concerns about the impact of juvenile/mature wood proportion on wood properties. Lumber recovered from four site...

Full description

Saved in:
Bibliographic Details
Published in:Forests 2018-09, Vol.9 (9), p.576
Main Authors: Lowell, Eini, Turnblom, Eric, Comnick, Jeff, Huang, CL
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Douglas-fir, the most important timber species in the Pacific Northwest, US (PNW), has high stiffness and strength. Growing it in plantations on short rotations since the 1980s has led to concerns about the impact of juvenile/mature wood proportion on wood properties. Lumber recovered from four sites in a thinning trial in the PNW was analyzed for relationships between thinning regime and lumber grade yield. Linear mixed-effects models were developed for understanding how rotation age and thinning affect the lumber grade yield. Log small-end diameter was overall the most important for describing the presence of an appearance grade, generally exhibiting an indirect relationship with the lower quality grades. Stand Quadratic Mean Diameter (QMD) was found to be the next most uniformly important predictor, its influence (positive or negative) depending on the lumber grade. For quantity within a grade, as log small-end diameter increased, the quantity of the highest grade increased, while decreasing the quantity of the lower grades differentially. Other tree and stand attributes were of varying importance among grades, including stand density, tree height, and stand slope, but logically depicted the tradeoffs or rebalancing among the grades as the tree and stand characteristics change. Structural lumber grade presence was described best by acoustic wave flight time, log position (decreasing presence in upper logs), and an increasing presence with rotation age. A smaller set of variables proved useful for describing quantity within a structural grade. Forest managers can use these results in planning to best capture value in harvesting, allowing them to direct raw materials (logs) to appropriate manufacturing facilities given market demand.
ISSN:1999-4907
1999-4907
DOI:10.3390/f9090576