Loading…

Solution of Optimal Power Flow Using Non-Dominated Sorting Multi Objective Based Hybrid Firefly and Particle Swarm Optimization Algorithm

In this paper, a multi-objective hybrid firefly and particle swarm optimization (MOHFPSO) was proposed for different multi-objective optimal power flow (MOOPF) problems. Optimal power flow (OPF) was formulated as a non-linear problem with various objectives and constraints. Pareto optimal front was...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2020-08, Vol.13 (16), p.4265
Main Authors: Khan, Abdullah, Hizam, Hashim, Abdul-Wahab, Noor Izzri, Othman, Mohammad Lutfi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-9dbab6784184e1e26a2e83b6e9d120c2d6394406340fe870cfcb219af1c027233
cites cdi_FETCH-LOGICAL-c361t-9dbab6784184e1e26a2e83b6e9d120c2d6394406340fe870cfcb219af1c027233
container_end_page
container_issue 16
container_start_page 4265
container_title Energies (Basel)
container_volume 13
creator Khan, Abdullah
Hizam, Hashim
Abdul-Wahab, Noor Izzri
Othman, Mohammad Lutfi
description In this paper, a multi-objective hybrid firefly and particle swarm optimization (MOHFPSO) was proposed for different multi-objective optimal power flow (MOOPF) problems. Optimal power flow (OPF) was formulated as a non-linear problem with various objectives and constraints. Pareto optimal front was obtained by using non-dominated sorting and crowding distance methods. Finally, an optimal compromised solution was selected from the Pareto optimal set by applying an ideal distance minimization method. The efficiency of the proposed MOHFPSO technique was tested on standard IEEE 30-bus and IEEE 57-bus test systems with various conflicting objectives. Simulation results were also compared with non-dominated sorting based multi-objective particle swarm optimization (MOPSO) and different optimization algorithms reported in the current literature. The achieved results revealed the potential of the proposed algorithm for MOOPF problems.
doi_str_mv 10.3390/en13164265
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5f5071b0cb6d4d76b5c3ae435ff2067b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5f5071b0cb6d4d76b5c3ae435ff2067b</doaj_id><sourcerecordid>2436224815</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-9dbab6784184e1e26a2e83b6e9d120c2d6394406340fe870cfcb219af1c027233</originalsourceid><addsrcrecordid>eNpNUclOwzAQjRBIIODCF1jihhSwPY6THNlKkYAiFc6W1-IqjYvjUpU_4K9JaQXMZUZvZt6bJctOCD4HqPGFbQkQzigvdrIDUtc8J7iE3X_xfnbcdVPcGwABgIPsaxyaRfKhRcGh0Tz5mWzQc1jaiAZNWKLXzrcT9BTa_CbMfCuTNWgcYlqjj4smeTRSU6uT_7DoSnZ9drhS0Rs08NG6ZoVka9Cz7Bt0Y9F4KeNsI-M_5Y_sZTMJ0ae32VG252TT2eOtP8xeB7cv18P8YXR3f335kGvgJOW1UVLxsmKkYpZYyiW1FShua0Mo1tRwqBnDHBh2tiqxdlpRUktHNKYlBTjM7je8JsipmMd-47gSQXrxA4Q4EdtxReEKXBKFteKGmZKrQoO0DArnKOal6rlON1zzGN4XtktiGhax7ccXlAGnlFWk6KvONlU6hq7rz_KrSrBYf078fQ6-AbPXi4Y</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436224815</pqid></control><display><type>article</type><title>Solution of Optimal Power Flow Using Non-Dominated Sorting Multi Objective Based Hybrid Firefly and Particle Swarm Optimization Algorithm</title><source>Publicly Available Content Database</source><creator>Khan, Abdullah ; Hizam, Hashim ; Abdul-Wahab, Noor Izzri ; Othman, Mohammad Lutfi</creator><creatorcontrib>Khan, Abdullah ; Hizam, Hashim ; Abdul-Wahab, Noor Izzri ; Othman, Mohammad Lutfi</creatorcontrib><description>In this paper, a multi-objective hybrid firefly and particle swarm optimization (MOHFPSO) was proposed for different multi-objective optimal power flow (MOOPF) problems. Optimal power flow (OPF) was formulated as a non-linear problem with various objectives and constraints. Pareto optimal front was obtained by using non-dominated sorting and crowding distance methods. Finally, an optimal compromised solution was selected from the Pareto optimal set by applying an ideal distance minimization method. The efficiency of the proposed MOHFPSO technique was tested on standard IEEE 30-bus and IEEE 57-bus test systems with various conflicting objectives. Simulation results were also compared with non-dominated sorting based multi-objective particle swarm optimization (MOPSO) and different optimization algorithms reported in the current literature. The achieved results revealed the potential of the proposed algorithm for MOOPF problems.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en13164265</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Computer simulation ; ideal distance minimization ; Methods ; multi-objective optimization ; Multiple objective analysis ; non-dominated sorting ; Objectives ; optimal power flow ; Optimization ; Optimization algorithms ; Optimization techniques ; Power flow ; Sorting algorithms ; Test systems ; total fuel cost minimization ; voltage profile enhancement</subject><ispartof>Energies (Basel), 2020-08, Vol.13 (16), p.4265</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-9dbab6784184e1e26a2e83b6e9d120c2d6394406340fe870cfcb219af1c027233</citedby><cites>FETCH-LOGICAL-c361t-9dbab6784184e1e26a2e83b6e9d120c2d6394406340fe870cfcb219af1c027233</cites><orcidid>0000-0003-4356-8205 ; 0000-0003-0382-8666 ; 0000-0002-9042-9796</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2436224815/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2436224815?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Khan, Abdullah</creatorcontrib><creatorcontrib>Hizam, Hashim</creatorcontrib><creatorcontrib>Abdul-Wahab, Noor Izzri</creatorcontrib><creatorcontrib>Othman, Mohammad Lutfi</creatorcontrib><title>Solution of Optimal Power Flow Using Non-Dominated Sorting Multi Objective Based Hybrid Firefly and Particle Swarm Optimization Algorithm</title><title>Energies (Basel)</title><description>In this paper, a multi-objective hybrid firefly and particle swarm optimization (MOHFPSO) was proposed for different multi-objective optimal power flow (MOOPF) problems. Optimal power flow (OPF) was formulated as a non-linear problem with various objectives and constraints. Pareto optimal front was obtained by using non-dominated sorting and crowding distance methods. Finally, an optimal compromised solution was selected from the Pareto optimal set by applying an ideal distance minimization method. The efficiency of the proposed MOHFPSO technique was tested on standard IEEE 30-bus and IEEE 57-bus test systems with various conflicting objectives. Simulation results were also compared with non-dominated sorting based multi-objective particle swarm optimization (MOPSO) and different optimization algorithms reported in the current literature. The achieved results revealed the potential of the proposed algorithm for MOOPF problems.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>ideal distance minimization</subject><subject>Methods</subject><subject>multi-objective optimization</subject><subject>Multiple objective analysis</subject><subject>non-dominated sorting</subject><subject>Objectives</subject><subject>optimal power flow</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Optimization techniques</subject><subject>Power flow</subject><subject>Sorting algorithms</subject><subject>Test systems</subject><subject>total fuel cost minimization</subject><subject>voltage profile enhancement</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUclOwzAQjRBIIODCF1jihhSwPY6THNlKkYAiFc6W1-IqjYvjUpU_4K9JaQXMZUZvZt6bJctOCD4HqPGFbQkQzigvdrIDUtc8J7iE3X_xfnbcdVPcGwABgIPsaxyaRfKhRcGh0Tz5mWzQc1jaiAZNWKLXzrcT9BTa_CbMfCuTNWgcYlqjj4smeTRSU6uT_7DoSnZ9drhS0Rs08NG6ZoVka9Cz7Bt0Y9F4KeNsI-M_5Y_sZTMJ0ae32VG252TT2eOtP8xeB7cv18P8YXR3f335kGvgJOW1UVLxsmKkYpZYyiW1FShua0Mo1tRwqBnDHBh2tiqxdlpRUktHNKYlBTjM7je8JsipmMd-47gSQXrxA4Q4EdtxReEKXBKFteKGmZKrQoO0DArnKOal6rlON1zzGN4XtktiGhax7ccXlAGnlFWk6KvONlU6hq7rz_KrSrBYf078fQ6-AbPXi4Y</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Khan, Abdullah</creator><creator>Hizam, Hashim</creator><creator>Abdul-Wahab, Noor Izzri</creator><creator>Othman, Mohammad Lutfi</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4356-8205</orcidid><orcidid>https://orcid.org/0000-0003-0382-8666</orcidid><orcidid>https://orcid.org/0000-0002-9042-9796</orcidid></search><sort><creationdate>20200801</creationdate><title>Solution of Optimal Power Flow Using Non-Dominated Sorting Multi Objective Based Hybrid Firefly and Particle Swarm Optimization Algorithm</title><author>Khan, Abdullah ; Hizam, Hashim ; Abdul-Wahab, Noor Izzri ; Othman, Mohammad Lutfi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-9dbab6784184e1e26a2e83b6e9d120c2d6394406340fe870cfcb219af1c027233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>ideal distance minimization</topic><topic>Methods</topic><topic>multi-objective optimization</topic><topic>Multiple objective analysis</topic><topic>non-dominated sorting</topic><topic>Objectives</topic><topic>optimal power flow</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Optimization techniques</topic><topic>Power flow</topic><topic>Sorting algorithms</topic><topic>Test systems</topic><topic>total fuel cost minimization</topic><topic>voltage profile enhancement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Abdullah</creatorcontrib><creatorcontrib>Hizam, Hashim</creatorcontrib><creatorcontrib>Abdul-Wahab, Noor Izzri</creatorcontrib><creatorcontrib>Othman, Mohammad Lutfi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Abdullah</au><au>Hizam, Hashim</au><au>Abdul-Wahab, Noor Izzri</au><au>Othman, Mohammad Lutfi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solution of Optimal Power Flow Using Non-Dominated Sorting Multi Objective Based Hybrid Firefly and Particle Swarm Optimization Algorithm</atitle><jtitle>Energies (Basel)</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>13</volume><issue>16</issue><spage>4265</spage><pages>4265-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>In this paper, a multi-objective hybrid firefly and particle swarm optimization (MOHFPSO) was proposed for different multi-objective optimal power flow (MOOPF) problems. Optimal power flow (OPF) was formulated as a non-linear problem with various objectives and constraints. Pareto optimal front was obtained by using non-dominated sorting and crowding distance methods. Finally, an optimal compromised solution was selected from the Pareto optimal set by applying an ideal distance minimization method. The efficiency of the proposed MOHFPSO technique was tested on standard IEEE 30-bus and IEEE 57-bus test systems with various conflicting objectives. Simulation results were also compared with non-dominated sorting based multi-objective particle swarm optimization (MOPSO) and different optimization algorithms reported in the current literature. The achieved results revealed the potential of the proposed algorithm for MOOPF problems.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en13164265</doi><orcidid>https://orcid.org/0000-0003-4356-8205</orcidid><orcidid>https://orcid.org/0000-0003-0382-8666</orcidid><orcidid>https://orcid.org/0000-0002-9042-9796</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1073
ispartof Energies (Basel), 2020-08, Vol.13 (16), p.4265
issn 1996-1073
1996-1073
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5f5071b0cb6d4d76b5c3ae435ff2067b
source Publicly Available Content Database
subjects Algorithms
Computer simulation
ideal distance minimization
Methods
multi-objective optimization
Multiple objective analysis
non-dominated sorting
Objectives
optimal power flow
Optimization
Optimization algorithms
Optimization techniques
Power flow
Sorting algorithms
Test systems
total fuel cost minimization
voltage profile enhancement
title Solution of Optimal Power Flow Using Non-Dominated Sorting Multi Objective Based Hybrid Firefly and Particle Swarm Optimization Algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A25%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solution%20of%20Optimal%20Power%20Flow%20Using%20Non-Dominated%20Sorting%20Multi%20Objective%20Based%20Hybrid%20Firefly%20and%20Particle%20Swarm%20Optimization%20Algorithm&rft.jtitle=Energies%20(Basel)&rft.au=Khan,%20Abdullah&rft.date=2020-08-01&rft.volume=13&rft.issue=16&rft.spage=4265&rft.pages=4265-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en13164265&rft_dat=%3Cproquest_doaj_%3E2436224815%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-9dbab6784184e1e26a2e83b6e9d120c2d6394406340fe870cfcb219af1c027233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2436224815&rft_id=info:pmid/&rfr_iscdi=true