Loading…

An Environmental Perception Framework for Robotic Fish Formation Based on Machine Learning Methods

Autonomous Underwater Vehicle (AUV) has become a hotspot in the field of robot in recent years. As a special kind of AUV, the robotic fish can achieve better propulsion efficiency and maneuverability than traditional AUVs. Studies show that robotic fish formation can save energy and perform more com...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2019-09, Vol.9 (17), p.3573
Main Authors: Li, Shuman, Yang, Wenjing, Xu, Liyang, Li, Chao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-8f90b9c5e4eb096abc83a3ebc8d540790dfee3c417835295394d20296cef71403
cites cdi_FETCH-LOGICAL-c361t-8f90b9c5e4eb096abc83a3ebc8d540790dfee3c417835295394d20296cef71403
container_end_page
container_issue 17
container_start_page 3573
container_title Applied sciences
container_volume 9
creator Li, Shuman
Yang, Wenjing
Xu, Liyang
Li, Chao
description Autonomous Underwater Vehicle (AUV) has become a hotspot in the field of robot in recent years. As a special kind of AUV, the robotic fish can achieve better propulsion efficiency and maneuverability than traditional AUVs. Studies show that robotic fish formation can save energy and perform more complex tasks than single robotic fish, but it is difficult to maintain a stable formation because the nearby environmental condition is hard to obtain. Inspired by the lateral line system (LLS) of fish, this paper constructs a predictive model of flow velocity and a judgement model of spacing between individual platforms for robotic fish formation through monitoring sensors on robotic fish surface. The models are built by methods of polynomial fitting and neural networks based on Computational Fluid Dynamics (CFD) simulation. The results show that the flow velocity predicted by our model could reduce the error to 0.4 % , and the spacing judgement accuracy could reach at least 80%. The findings are useful for maintaining a stable formation and will provide significant guidance for the control of robotic fish formation and sensor installation position on the robotic fish surface.
doi_str_mv 10.3390/app9173573
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5f549a887d114d6ca9773cffb297a94a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5f549a887d114d6ca9773cffb297a94a</doaj_id><sourcerecordid>2533593191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-8f90b9c5e4eb096abc83a3ebc8d540790dfee3c417835295394d20296cef71403</originalsourceid><addsrcrecordid>eNpNUV1PGzEQtKoigUJe-AWW-oaUYt-ez-dHiBJACqJC8Gzt-dbk0sS-2geIf98jqSj7MqPVaPZjGDuT4ieAERfY90ZqUBq-sZNC6GoGpdTfv_BjNs15I8YyEmopTlhzGfgivHYphh2FAbf8FyVH_dDFwJcJd_QW02_uY-IPsYlD5_iyy2u-jGmHe9EVZmr5SO7QrbtAfEWYQhee-R0N69jmU3bkcZtp-g8n7Gm5eJzfzFb317fzy9XMQSWHWe2NaIxTVFIjTIWNqwGBRmhVKbQRrScCN15RgyqMAlO2hShM5chrWQqYsNuDbxtxY_vU7TC924id3TdieraYxgO2ZJVXpcG61q2UZVs5NFqD874pjEZT4uj14-DVp_jnhfJgN_ElhXF9WygAZUCOH5yw84PKpZhzIv85VQr7EYn9Hwn8BR_gfcQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2533593191</pqid></control><display><type>article</type><title>An Environmental Perception Framework for Robotic Fish Formation Based on Machine Learning Methods</title><source>Publicly Available Content Database</source><creator>Li, Shuman ; Yang, Wenjing ; Xu, Liyang ; Li, Chao</creator><creatorcontrib>Li, Shuman ; Yang, Wenjing ; Xu, Liyang ; Li, Chao</creatorcontrib><description>Autonomous Underwater Vehicle (AUV) has become a hotspot in the field of robot in recent years. As a special kind of AUV, the robotic fish can achieve better propulsion efficiency and maneuverability than traditional AUVs. Studies show that robotic fish formation can save energy and perform more complex tasks than single robotic fish, but it is difficult to maintain a stable formation because the nearby environmental condition is hard to obtain. Inspired by the lateral line system (LLS) of fish, this paper constructs a predictive model of flow velocity and a judgement model of spacing between individual platforms for robotic fish formation through monitoring sensors on robotic fish surface. The models are built by methods of polynomial fitting and neural networks based on Computational Fluid Dynamics (CFD) simulation. The results show that the flow velocity predicted by our model could reduce the error to 0.4 % , and the spacing judgement accuracy could reach at least 80%. The findings are useful for maintaining a stable formation and will provide significant guidance for the control of robotic fish formation and sensor installation position on the robotic fish surface.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app9173573</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Autonomous underwater vehicles ; Computational fluid dynamics ; Computer applications ; Efficiency ; Environmental conditions ; Environmental perception ; Error reduction ; Experiments ; Fish ; Flow velocity ; Fluid dynamics ; Fluid mechanics ; Hydrodynamics ; Kinematics ; Lateral line ; Learning algorithms ; Machine learning ; Maneuverability ; Neural networks ; Numerical analysis ; Polynomials ; Position sensing ; Prediction models ; Pressure distribution ; Robot control ; robotic fish ; Robotics ; Robots ; robots formation ; Sensors ; Simulation ; Swimming ; Task complexity ; Underwater vehicles ; Viscosity</subject><ispartof>Applied sciences, 2019-09, Vol.9 (17), p.3573</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-8f90b9c5e4eb096abc83a3ebc8d540790dfee3c417835295394d20296cef71403</citedby><cites>FETCH-LOGICAL-c361t-8f90b9c5e4eb096abc83a3ebc8d540790dfee3c417835295394d20296cef71403</cites><orcidid>0000-0001-8721-4826</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2533593191/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2533593191?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Li, Shuman</creatorcontrib><creatorcontrib>Yang, Wenjing</creatorcontrib><creatorcontrib>Xu, Liyang</creatorcontrib><creatorcontrib>Li, Chao</creatorcontrib><title>An Environmental Perception Framework for Robotic Fish Formation Based on Machine Learning Methods</title><title>Applied sciences</title><description>Autonomous Underwater Vehicle (AUV) has become a hotspot in the field of robot in recent years. As a special kind of AUV, the robotic fish can achieve better propulsion efficiency and maneuverability than traditional AUVs. Studies show that robotic fish formation can save energy and perform more complex tasks than single robotic fish, but it is difficult to maintain a stable formation because the nearby environmental condition is hard to obtain. Inspired by the lateral line system (LLS) of fish, this paper constructs a predictive model of flow velocity and a judgement model of spacing between individual platforms for robotic fish formation through monitoring sensors on robotic fish surface. The models are built by methods of polynomial fitting and neural networks based on Computational Fluid Dynamics (CFD) simulation. The results show that the flow velocity predicted by our model could reduce the error to 0.4 % , and the spacing judgement accuracy could reach at least 80%. The findings are useful for maintaining a stable formation and will provide significant guidance for the control of robotic fish formation and sensor installation position on the robotic fish surface.</description><subject>Autonomous underwater vehicles</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Efficiency</subject><subject>Environmental conditions</subject><subject>Environmental perception</subject><subject>Error reduction</subject><subject>Experiments</subject><subject>Fish</subject><subject>Flow velocity</subject><subject>Fluid dynamics</subject><subject>Fluid mechanics</subject><subject>Hydrodynamics</subject><subject>Kinematics</subject><subject>Lateral line</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Maneuverability</subject><subject>Neural networks</subject><subject>Numerical analysis</subject><subject>Polynomials</subject><subject>Position sensing</subject><subject>Prediction models</subject><subject>Pressure distribution</subject><subject>Robot control</subject><subject>robotic fish</subject><subject>Robotics</subject><subject>Robots</subject><subject>robots formation</subject><subject>Sensors</subject><subject>Simulation</subject><subject>Swimming</subject><subject>Task complexity</subject><subject>Underwater vehicles</subject><subject>Viscosity</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1PGzEQtKoigUJe-AWW-oaUYt-ez-dHiBJACqJC8Gzt-dbk0sS-2geIf98jqSj7MqPVaPZjGDuT4ieAERfY90ZqUBq-sZNC6GoGpdTfv_BjNs15I8YyEmopTlhzGfgivHYphh2FAbf8FyVH_dDFwJcJd_QW02_uY-IPsYlD5_iyy2u-jGmHe9EVZmr5SO7QrbtAfEWYQhee-R0N69jmU3bkcZtp-g8n7Gm5eJzfzFb317fzy9XMQSWHWe2NaIxTVFIjTIWNqwGBRmhVKbQRrScCN15RgyqMAlO2hShM5chrWQqYsNuDbxtxY_vU7TC924id3TdieraYxgO2ZJVXpcG61q2UZVs5NFqD874pjEZT4uj14-DVp_jnhfJgN_ElhXF9WygAZUCOH5yw84PKpZhzIv85VQr7EYn9Hwn8BR_gfcQ</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Li, Shuman</creator><creator>Yang, Wenjing</creator><creator>Xu, Liyang</creator><creator>Li, Chao</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8721-4826</orcidid></search><sort><creationdate>20190901</creationdate><title>An Environmental Perception Framework for Robotic Fish Formation Based on Machine Learning Methods</title><author>Li, Shuman ; Yang, Wenjing ; Xu, Liyang ; Li, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-8f90b9c5e4eb096abc83a3ebc8d540790dfee3c417835295394d20296cef71403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Autonomous underwater vehicles</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Efficiency</topic><topic>Environmental conditions</topic><topic>Environmental perception</topic><topic>Error reduction</topic><topic>Experiments</topic><topic>Fish</topic><topic>Flow velocity</topic><topic>Fluid dynamics</topic><topic>Fluid mechanics</topic><topic>Hydrodynamics</topic><topic>Kinematics</topic><topic>Lateral line</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Maneuverability</topic><topic>Neural networks</topic><topic>Numerical analysis</topic><topic>Polynomials</topic><topic>Position sensing</topic><topic>Prediction models</topic><topic>Pressure distribution</topic><topic>Robot control</topic><topic>robotic fish</topic><topic>Robotics</topic><topic>Robots</topic><topic>robots formation</topic><topic>Sensors</topic><topic>Simulation</topic><topic>Swimming</topic><topic>Task complexity</topic><topic>Underwater vehicles</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shuman</creatorcontrib><creatorcontrib>Yang, Wenjing</creatorcontrib><creatorcontrib>Xu, Liyang</creatorcontrib><creatorcontrib>Li, Chao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shuman</au><au>Yang, Wenjing</au><au>Xu, Liyang</au><au>Li, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Environmental Perception Framework for Robotic Fish Formation Based on Machine Learning Methods</atitle><jtitle>Applied sciences</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>9</volume><issue>17</issue><spage>3573</spage><pages>3573-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Autonomous Underwater Vehicle (AUV) has become a hotspot in the field of robot in recent years. As a special kind of AUV, the robotic fish can achieve better propulsion efficiency and maneuverability than traditional AUVs. Studies show that robotic fish formation can save energy and perform more complex tasks than single robotic fish, but it is difficult to maintain a stable formation because the nearby environmental condition is hard to obtain. Inspired by the lateral line system (LLS) of fish, this paper constructs a predictive model of flow velocity and a judgement model of spacing between individual platforms for robotic fish formation through monitoring sensors on robotic fish surface. The models are built by methods of polynomial fitting and neural networks based on Computational Fluid Dynamics (CFD) simulation. The results show that the flow velocity predicted by our model could reduce the error to 0.4 % , and the spacing judgement accuracy could reach at least 80%. The findings are useful for maintaining a stable formation and will provide significant guidance for the control of robotic fish formation and sensor installation position on the robotic fish surface.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app9173573</doi><orcidid>https://orcid.org/0000-0001-8721-4826</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2019-09, Vol.9 (17), p.3573
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5f549a887d114d6ca9773cffb297a94a
source Publicly Available Content Database
subjects Autonomous underwater vehicles
Computational fluid dynamics
Computer applications
Efficiency
Environmental conditions
Environmental perception
Error reduction
Experiments
Fish
Flow velocity
Fluid dynamics
Fluid mechanics
Hydrodynamics
Kinematics
Lateral line
Learning algorithms
Machine learning
Maneuverability
Neural networks
Numerical analysis
Polynomials
Position sensing
Prediction models
Pressure distribution
Robot control
robotic fish
Robotics
Robots
robots formation
Sensors
Simulation
Swimming
Task complexity
Underwater vehicles
Viscosity
title An Environmental Perception Framework for Robotic Fish Formation Based on Machine Learning Methods
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T16%3A59%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Environmental%20Perception%20Framework%20for%20Robotic%20Fish%20Formation%20Based%20on%20Machine%20Learning%20Methods&rft.jtitle=Applied%20sciences&rft.au=Li,%20Shuman&rft.date=2019-09-01&rft.volume=9&rft.issue=17&rft.spage=3573&rft.pages=3573-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app9173573&rft_dat=%3Cproquest_doaj_%3E2533593191%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-8f90b9c5e4eb096abc83a3ebc8d540790dfee3c417835295394d20296cef71403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2533593191&rft_id=info:pmid/&rfr_iscdi=true