Loading…

Smart Data-Driven Optimization of Powered Prosthetic Ankles Using Surface Electromyography

The advent of powered prosthetic ankles provided more balance and optimal energy expenditure to lower amputee gait. However, these types of systems require an extensive setup where the parameters of the ankle, such as the amount of positive power and the stiffness of the ankle, need to be setup. Cur...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2018-08, Vol.18 (8), p.2705
Main Authors: Atri, Roozbeh, Marquez, J Sebastian, Leung, Connie, Siddiquee, Masudur R, Murphy, Douglas P, Gorgey, Ashraf S, Lovegreen, William T, Fei, Ding-Yu, Bai, Ou
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c469t-d37937f06cec6cbf91d6aea5e22fd0b4c417eb1eae1c3d36f93a01eb5b6e058d3
cites cdi_FETCH-LOGICAL-c469t-d37937f06cec6cbf91d6aea5e22fd0b4c417eb1eae1c3d36f93a01eb5b6e058d3
container_end_page
container_issue 8
container_start_page 2705
container_title Sensors (Basel, Switzerland)
container_volume 18
creator Atri, Roozbeh
Marquez, J Sebastian
Leung, Connie
Siddiquee, Masudur R
Murphy, Douglas P
Gorgey, Ashraf S
Lovegreen, William T
Fei, Ding-Yu
Bai, Ou
description The advent of powered prosthetic ankles provided more balance and optimal energy expenditure to lower amputee gait. However, these types of systems require an extensive setup where the parameters of the ankle, such as the amount of positive power and the stiffness of the ankle, need to be setup. Currently, calibrations are performed by experts, who base the inputs on subjective observations and experience. In this study, a novel evidence-based tuning method was presented using multi-channel electromyogram data from the residual limb, and a model for muscle activity was built. Tuning using this model requires an exhaustive search over all the possible combinations of parameters, leading to computationally inefficient system. Various data-driven optimization methods were investigated and a modified Nelder⁻Mead algorithm using a Latin Hypercube Sampling method was introduced to tune the powered prosthetic. The results of the modified Nelder⁻Mead optimization were compared to the Exhaustive search, Genetic Algorithm, and conventional Nelder⁻Mead method, and the results showed the feasibility of using the presented method, to objectively calibrate the parameters in a time-efficient way using biological evidence.
doi_str_mv 10.3390/s18082705
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5f597dd7cfcd412197ec72bebe63a742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5f597dd7cfcd412197ec72bebe63a742</doaj_id><sourcerecordid>2091234618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-d37937f06cec6cbf91d6aea5e22fd0b4c417eb1eae1c3d36f93a01eb5b6e058d3</originalsourceid><addsrcrecordid>eNpdkU9PFDEYhydGI4ge_AKmiRc9jPTfTKcXEwKIJCSQIBcvTad9u9t1Zrq2Hcz66S0sboBTm_bJk_f9_arqPcFfGJP4MJEOd1Tg5kW1TzjldUcpfvnovle9SWmFMWWMda-rPYYJbQmh-9XP61HHjE501vVJ9Lcwoct19qP_q7MPEwoOXYU_EMGiqxhSXkL2Bh1NvwZI6Cb5aYGu5-i0AXQ6gMkxjJuwiHq93LytXjk9JHj3cB5UN99Ofxx_ry8uz86Pjy5qw1uZa8uEZMLh1oBpTe8ksa0G3QClzuKeG04E9AQ0EMMsa51kGhPom74F3HSWHVTnW68NeqXW0ZeNNipor-4fQlyosqI3A6jGNVJYK4wzlhNKpAAjaA89tEwLTovr69a1nvsRrIEpRz08kT79mfxSLcKtKmkSKroi-PQgiOH3DCmr0ScDw6AnCHNSFEtCGW_JHfrxGboKc5xKVIoS3HWCctkU6vOWMiX-FMHthiFY3bWvdu0X9sPj6Xfk_7rZP2Ztq8E</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2108872495</pqid></control><display><type>article</type><title>Smart Data-Driven Optimization of Powered Prosthetic Ankles Using Surface Electromyography</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Atri, Roozbeh ; Marquez, J Sebastian ; Leung, Connie ; Siddiquee, Masudur R ; Murphy, Douglas P ; Gorgey, Ashraf S ; Lovegreen, William T ; Fei, Ding-Yu ; Bai, Ou</creator><creatorcontrib>Atri, Roozbeh ; Marquez, J Sebastian ; Leung, Connie ; Siddiquee, Masudur R ; Murphy, Douglas P ; Gorgey, Ashraf S ; Lovegreen, William T ; Fei, Ding-Yu ; Bai, Ou</creatorcontrib><description>The advent of powered prosthetic ankles provided more balance and optimal energy expenditure to lower amputee gait. However, these types of systems require an extensive setup where the parameters of the ankle, such as the amount of positive power and the stiffness of the ankle, need to be setup. Currently, calibrations are performed by experts, who base the inputs on subjective observations and experience. In this study, a novel evidence-based tuning method was presented using multi-channel electromyogram data from the residual limb, and a model for muscle activity was built. Tuning using this model requires an exhaustive search over all the possible combinations of parameters, leading to computationally inefficient system. Various data-driven optimization methods were investigated and a modified Nelder⁻Mead algorithm using a Latin Hypercube Sampling method was introduced to tune the powered prosthetic. The results of the modified Nelder⁻Mead optimization were compared to the Exhaustive search, Genetic Algorithm, and conventional Nelder⁻Mead method, and the results showed the feasibility of using the presented method, to objectively calibrate the parameters in a time-efficient way using biological evidence.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s18082705</identifier><identifier>PMID: 30126112</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Amputees - rehabilitation ; Ankle ; Artificial Limbs ; Biomechanical Phenomena ; Calibration ; data-driven optimization ; Electromyography ; Gait ; Genetic algorithms ; Humans ; Hypercubes ; Latin Hypercube Sampling ; Muscles ; Nelder–Mead ; parameter tuning ; powered prosthetic ankle ; Prostheses ; Stiffness</subject><ispartof>Sensors (Basel, Switzerland), 2018-08, Vol.18 (8), p.2705</ispartof><rights>2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 by the authors. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-d37937f06cec6cbf91d6aea5e22fd0b4c417eb1eae1c3d36f93a01eb5b6e058d3</citedby><cites>FETCH-LOGICAL-c469t-d37937f06cec6cbf91d6aea5e22fd0b4c417eb1eae1c3d36f93a01eb5b6e058d3</cites><orcidid>0000-0003-4915-656X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2108872495/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2108872495?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30126112$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Atri, Roozbeh</creatorcontrib><creatorcontrib>Marquez, J Sebastian</creatorcontrib><creatorcontrib>Leung, Connie</creatorcontrib><creatorcontrib>Siddiquee, Masudur R</creatorcontrib><creatorcontrib>Murphy, Douglas P</creatorcontrib><creatorcontrib>Gorgey, Ashraf S</creatorcontrib><creatorcontrib>Lovegreen, William T</creatorcontrib><creatorcontrib>Fei, Ding-Yu</creatorcontrib><creatorcontrib>Bai, Ou</creatorcontrib><title>Smart Data-Driven Optimization of Powered Prosthetic Ankles Using Surface Electromyography</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>The advent of powered prosthetic ankles provided more balance and optimal energy expenditure to lower amputee gait. However, these types of systems require an extensive setup where the parameters of the ankle, such as the amount of positive power and the stiffness of the ankle, need to be setup. Currently, calibrations are performed by experts, who base the inputs on subjective observations and experience. In this study, a novel evidence-based tuning method was presented using multi-channel electromyogram data from the residual limb, and a model for muscle activity was built. Tuning using this model requires an exhaustive search over all the possible combinations of parameters, leading to computationally inefficient system. Various data-driven optimization methods were investigated and a modified Nelder⁻Mead algorithm using a Latin Hypercube Sampling method was introduced to tune the powered prosthetic. The results of the modified Nelder⁻Mead optimization were compared to the Exhaustive search, Genetic Algorithm, and conventional Nelder⁻Mead method, and the results showed the feasibility of using the presented method, to objectively calibrate the parameters in a time-efficient way using biological evidence.</description><subject>Algorithms</subject><subject>Amputees - rehabilitation</subject><subject>Ankle</subject><subject>Artificial Limbs</subject><subject>Biomechanical Phenomena</subject><subject>Calibration</subject><subject>data-driven optimization</subject><subject>Electromyography</subject><subject>Gait</subject><subject>Genetic algorithms</subject><subject>Humans</subject><subject>Hypercubes</subject><subject>Latin Hypercube Sampling</subject><subject>Muscles</subject><subject>Nelder–Mead</subject><subject>parameter tuning</subject><subject>powered prosthetic ankle</subject><subject>Prostheses</subject><subject>Stiffness</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU9PFDEYhydGI4ge_AKmiRc9jPTfTKcXEwKIJCSQIBcvTad9u9t1Zrq2Hcz66S0sboBTm_bJk_f9_arqPcFfGJP4MJEOd1Tg5kW1TzjldUcpfvnovle9SWmFMWWMda-rPYYJbQmh-9XP61HHjE501vVJ9Lcwoct19qP_q7MPEwoOXYU_EMGiqxhSXkL2Bh1NvwZI6Cb5aYGu5-i0AXQ6gMkxjJuwiHq93LytXjk9JHj3cB5UN99Ofxx_ry8uz86Pjy5qw1uZa8uEZMLh1oBpTe8ksa0G3QClzuKeG04E9AQ0EMMsa51kGhPom74F3HSWHVTnW68NeqXW0ZeNNipor-4fQlyosqI3A6jGNVJYK4wzlhNKpAAjaA89tEwLTovr69a1nvsRrIEpRz08kT79mfxSLcKtKmkSKroi-PQgiOH3DCmr0ScDw6AnCHNSFEtCGW_JHfrxGboKc5xKVIoS3HWCctkU6vOWMiX-FMHthiFY3bWvdu0X9sPj6Xfk_7rZP2Ztq8E</recordid><startdate>20180817</startdate><enddate>20180817</enddate><creator>Atri, Roozbeh</creator><creator>Marquez, J Sebastian</creator><creator>Leung, Connie</creator><creator>Siddiquee, Masudur R</creator><creator>Murphy, Douglas P</creator><creator>Gorgey, Ashraf S</creator><creator>Lovegreen, William T</creator><creator>Fei, Ding-Yu</creator><creator>Bai, Ou</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4915-656X</orcidid></search><sort><creationdate>20180817</creationdate><title>Smart Data-Driven Optimization of Powered Prosthetic Ankles Using Surface Electromyography</title><author>Atri, Roozbeh ; Marquez, J Sebastian ; Leung, Connie ; Siddiquee, Masudur R ; Murphy, Douglas P ; Gorgey, Ashraf S ; Lovegreen, William T ; Fei, Ding-Yu ; Bai, Ou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-d37937f06cec6cbf91d6aea5e22fd0b4c417eb1eae1c3d36f93a01eb5b6e058d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Amputees - rehabilitation</topic><topic>Ankle</topic><topic>Artificial Limbs</topic><topic>Biomechanical Phenomena</topic><topic>Calibration</topic><topic>data-driven optimization</topic><topic>Electromyography</topic><topic>Gait</topic><topic>Genetic algorithms</topic><topic>Humans</topic><topic>Hypercubes</topic><topic>Latin Hypercube Sampling</topic><topic>Muscles</topic><topic>Nelder–Mead</topic><topic>parameter tuning</topic><topic>powered prosthetic ankle</topic><topic>Prostheses</topic><topic>Stiffness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Atri, Roozbeh</creatorcontrib><creatorcontrib>Marquez, J Sebastian</creatorcontrib><creatorcontrib>Leung, Connie</creatorcontrib><creatorcontrib>Siddiquee, Masudur R</creatorcontrib><creatorcontrib>Murphy, Douglas P</creatorcontrib><creatorcontrib>Gorgey, Ashraf S</creatorcontrib><creatorcontrib>Lovegreen, William T</creatorcontrib><creatorcontrib>Fei, Ding-Yu</creatorcontrib><creatorcontrib>Bai, Ou</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Atri, Roozbeh</au><au>Marquez, J Sebastian</au><au>Leung, Connie</au><au>Siddiquee, Masudur R</au><au>Murphy, Douglas P</au><au>Gorgey, Ashraf S</au><au>Lovegreen, William T</au><au>Fei, Ding-Yu</au><au>Bai, Ou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smart Data-Driven Optimization of Powered Prosthetic Ankles Using Surface Electromyography</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2018-08-17</date><risdate>2018</risdate><volume>18</volume><issue>8</issue><spage>2705</spage><pages>2705-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>The advent of powered prosthetic ankles provided more balance and optimal energy expenditure to lower amputee gait. However, these types of systems require an extensive setup where the parameters of the ankle, such as the amount of positive power and the stiffness of the ankle, need to be setup. Currently, calibrations are performed by experts, who base the inputs on subjective observations and experience. In this study, a novel evidence-based tuning method was presented using multi-channel electromyogram data from the residual limb, and a model for muscle activity was built. Tuning using this model requires an exhaustive search over all the possible combinations of parameters, leading to computationally inefficient system. Various data-driven optimization methods were investigated and a modified Nelder⁻Mead algorithm using a Latin Hypercube Sampling method was introduced to tune the powered prosthetic. The results of the modified Nelder⁻Mead optimization were compared to the Exhaustive search, Genetic Algorithm, and conventional Nelder⁻Mead method, and the results showed the feasibility of using the presented method, to objectively calibrate the parameters in a time-efficient way using biological evidence.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>30126112</pmid><doi>10.3390/s18082705</doi><orcidid>https://orcid.org/0000-0003-4915-656X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2018-08, Vol.18 (8), p.2705
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5f597dd7cfcd412197ec72bebe63a742
source Publicly Available Content (ProQuest); PubMed Central
subjects Algorithms
Amputees - rehabilitation
Ankle
Artificial Limbs
Biomechanical Phenomena
Calibration
data-driven optimization
Electromyography
Gait
Genetic algorithms
Humans
Hypercubes
Latin Hypercube Sampling
Muscles
Nelder–Mead
parameter tuning
powered prosthetic ankle
Prostheses
Stiffness
title Smart Data-Driven Optimization of Powered Prosthetic Ankles Using Surface Electromyography
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A04%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smart%20Data-Driven%20Optimization%20of%20Powered%20Prosthetic%20Ankles%20Using%20Surface%20Electromyography&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Atri,%20Roozbeh&rft.date=2018-08-17&rft.volume=18&rft.issue=8&rft.spage=2705&rft.pages=2705-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s18082705&rft_dat=%3Cproquest_doaj_%3E2091234618%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-d37937f06cec6cbf91d6aea5e22fd0b4c417eb1eae1c3d36f93a01eb5b6e058d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2108872495&rft_id=info:pmid/30126112&rfr_iscdi=true