Loading…

Crowd Face Detection with Naive Bayes in Attendance System Using Raspberry Pi

PT. Restu Agung Narogong is a company with a total of 176 employees, queues often occur in the attendance process, both incoming and outgoing attendance. The employee needs to register their attendance. It is time consuming during the shift change. Therefore, a biometric system is needed to support...

Full description

Saved in:
Bibliographic Details
Main Authors: Rahman, Riki Fauzi, Suharjito
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:PT. Restu Agung Narogong is a company with a total of 176 employees, queues often occur in the attendance process, both incoming and outgoing attendance. The employee needs to register their attendance. It is time consuming during the shift change. Therefore, a biometric system is needed to support the attendance system to identify employee without registering themselves. One of the alternative biometric systems is face recognition by using a computer vision. The purpose is to implement a crowd face detection with Raspberry Pi using the Naïve Bayes classifier. This system uses an algorithm to extract facial characteristics into mathematical data. Then the data is compared with data from other facial characteristics collected in the database. This device uses Python as a programming language with some of the scientific Python libraries. The testing of the Naïve Bayes method was conducted using a sample of dataset of 370 augmented facial imagery. The accuracy of this implementation is 76.31%, the precision is 78.25% and recall 81.25%. The background and lighting of the captured image affect the accuracy of this device.
ISSN:2267-1242
2555-0403
2267-1242
DOI:10.1051/e3sconf/202338802010