Loading…

Biological basis of extensive pleiotropy between blood traits and cancer risk

The immune system has a central role in preventing carcinogenesis. Alteration of systemic immune cell levels may increase cancer risk. However, the extent to which common genetic variation influences blood traits and cancer risk remains largely undetermined. Here, we identify pleiotropic variants an...

Full description

Saved in:
Bibliographic Details
Published in:Genome medicine 2024-02, Vol.16 (1), p.21-22, Article 21
Main Authors: Pardo-Cea, Miguel Angel, Farré, Xavier, Esteve, Anna, Palade, Joanna, Espín, Roderic, Mateo, Francesca, Alsop, Eric, Alorda, Marc, Blay, Natalia, Baiges, Alexandra, Shabbir, Arzoo, Comellas, Francesc, Gómez, Antonio, Arnan, Montserrat, Teulé, Alex, Salinas, Monica, Berrocal, Laura, Brunet, Joan, Rofes, Paula, Lázaro, Conxi, Conesa, Miquel, Rojas, Juan Jose, Velten, Lars, Fendler, Wojciech, Smyczynska, Urszula, Chowdhury, Dipanjan, Zeng, Yong, He, Housheng Hansen, Li, Rong, Van Keuren-Jensen, Kendall, de Cid, Rafael, Pujana, Miquel Angel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c539t-43be1c09d03b522c37ee50fbef1feea4b340e4c6a75b97f442283cd7b3e1520a3
cites cdi_FETCH-LOGICAL-c539t-43be1c09d03b522c37ee50fbef1feea4b340e4c6a75b97f442283cd7b3e1520a3
container_end_page 22
container_issue 1
container_start_page 21
container_title Genome medicine
container_volume 16
creator Pardo-Cea, Miguel Angel
Farré, Xavier
Esteve, Anna
Palade, Joanna
Espín, Roderic
Mateo, Francesca
Alsop, Eric
Alorda, Marc
Blay, Natalia
Baiges, Alexandra
Shabbir, Arzoo
Comellas, Francesc
Gómez, Antonio
Arnan, Montserrat
Teulé, Alex
Salinas, Monica
Berrocal, Laura
Brunet, Joan
Rofes, Paula
Lázaro, Conxi
Conesa, Miquel
Rojas, Juan Jose
Velten, Lars
Fendler, Wojciech
Smyczynska, Urszula
Chowdhury, Dipanjan
Zeng, Yong
He, Housheng Hansen
Li, Rong
Van Keuren-Jensen, Kendall
de Cid, Rafael
Pujana, Miquel Angel
description The immune system has a central role in preventing carcinogenesis. Alteration of systemic immune cell levels may increase cancer risk. However, the extent to which common genetic variation influences blood traits and cancer risk remains largely undetermined. Here, we identify pleiotropic variants and predict their underlying molecular and cellular alterations. Multivariate Cox regression was used to evaluate associations between blood traits and cancer diagnosis in cases in the UK Biobank. Shared genetic variants were identified from the summary statistics of the genome-wide association studies of 27 blood traits and 27 cancer types and subtypes, applying the conditional/conjunctional false-discovery rate approach. Analysis of genomic positions, expression quantitative trait loci, enhancers, regulatory marks, functionally defined gene sets, and bulk- and single-cell expression profiles predicted the biological impact of pleiotropic variants. Plasma small RNAs were sequenced to assess association with cancer diagnosis. The study identified 4093 common genetic variants, involving 1248 gene loci, that contributed to blood-cancer pleiotropism. Genomic hotspots of pleiotropism include chromosomal regions 5p15-TERT and 6p21-HLA. Genes whose products are involved in regulating telomere length are found to be enriched in pleiotropic variants. Pleiotropic gene candidates are frequently linked to transcriptional programs that regulate hematopoiesis and define progenitor cell states of immune system development. Perturbation of the myeloid lineage is indicated by pleiotropic associations with defined master regulators and cell alterations. Eosinophil count is inversely associated with cancer risk. A high frequency of pleiotropic associations is also centered on the regulation of small noncoding Y-RNAs. Predicted pleiotropic Y-RNAs show specific regulatory marks and are overabundant in the normal tissue and blood of cancer patients. Analysis of plasma small RNAs in women who developed breast cancer indicates there is an overabundance of Y-RNA preceding neoplasm diagnosis. This study reveals extensive pleiotropism between blood traits and cancer risk. Pleiotropism is linked to factors and processes involved in hematopoietic development and immune system function, including components of the major histocompatibility complexes, and regulators of telomere length and myeloid lineage. Deregulation of Y-RNAs is also associated with pleiotropism. Overexpression of these eleme
doi_str_mv 10.1186/s13073-024-01294-8
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5f8c5c339bf345519940b8098cf83a6d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A782198441</galeid><doaj_id>oai_doaj_org_article_5f8c5c339bf345519940b8098cf83a6d</doaj_id><sourcerecordid>A782198441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c539t-43be1c09d03b522c37ee50fbef1feea4b340e4c6a75b97f442283cd7b3e1520a3</originalsourceid><addsrcrecordid>eNptkk1rFTEYhQdRbK3-ARcyIIibqfmcJMu2-FGouFFwF5LMm9tccyfXJKP235vbW2srkkXCy3NOeA-n655jdIyxHN8UTJGgAyJsQJgoNsgH3SEWfByUYl8f3nkfdE9KWSM0MsLE4-6ASookHcVh9_E0pJhWwZnYW1NC6ZPv4VeFuYQf0G8jhFRz2l71FupPgLm3MaWpr9mEWnozT70zs4Pc51C-Pe0eeRMLPLu5j7ov795-PvswXHx6f352cjE4TlUdGLWAHVITopYT4qgA4Mhb8NgDGGYpQ8DcaAS3SnjGCJHUTcJSwJwgQ4-6873vlMxab3PYmHylkwn6epDySptcg4uguZeOO0qV9ZRxjlscyEqkpPOSmnFqXq_3Xtucvi9Qqt6E4iBGM0NaiiaKEMbUKHhDX_6DrtOS57bpjuIjbb7jX2pl2v9h9i1A43am-kRIgpVkDDfq-D9UOxNsgksz-NDm9wSv7gguwcR6WVJcakhzuQ-SPehyKiWDvw0II70rjt4XR7fi6OviaNlEL25WW-wGplvJn6bQ37auuxU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2925638096</pqid></control><display><type>article</type><title>Biological basis of extensive pleiotropy between blood traits and cancer risk</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Pardo-Cea, Miguel Angel ; Farré, Xavier ; Esteve, Anna ; Palade, Joanna ; Espín, Roderic ; Mateo, Francesca ; Alsop, Eric ; Alorda, Marc ; Blay, Natalia ; Baiges, Alexandra ; Shabbir, Arzoo ; Comellas, Francesc ; Gómez, Antonio ; Arnan, Montserrat ; Teulé, Alex ; Salinas, Monica ; Berrocal, Laura ; Brunet, Joan ; Rofes, Paula ; Lázaro, Conxi ; Conesa, Miquel ; Rojas, Juan Jose ; Velten, Lars ; Fendler, Wojciech ; Smyczynska, Urszula ; Chowdhury, Dipanjan ; Zeng, Yong ; He, Housheng Hansen ; Li, Rong ; Van Keuren-Jensen, Kendall ; de Cid, Rafael ; Pujana, Miquel Angel</creator><creatorcontrib>Pardo-Cea, Miguel Angel ; Farré, Xavier ; Esteve, Anna ; Palade, Joanna ; Espín, Roderic ; Mateo, Francesca ; Alsop, Eric ; Alorda, Marc ; Blay, Natalia ; Baiges, Alexandra ; Shabbir, Arzoo ; Comellas, Francesc ; Gómez, Antonio ; Arnan, Montserrat ; Teulé, Alex ; Salinas, Monica ; Berrocal, Laura ; Brunet, Joan ; Rofes, Paula ; Lázaro, Conxi ; Conesa, Miquel ; Rojas, Juan Jose ; Velten, Lars ; Fendler, Wojciech ; Smyczynska, Urszula ; Chowdhury, Dipanjan ; Zeng, Yong ; He, Housheng Hansen ; Li, Rong ; Van Keuren-Jensen, Kendall ; de Cid, Rafael ; Pujana, Miquel Angel</creatorcontrib><description>The immune system has a central role in preventing carcinogenesis. Alteration of systemic immune cell levels may increase cancer risk. However, the extent to which common genetic variation influences blood traits and cancer risk remains largely undetermined. Here, we identify pleiotropic variants and predict their underlying molecular and cellular alterations. Multivariate Cox regression was used to evaluate associations between blood traits and cancer diagnosis in cases in the UK Biobank. Shared genetic variants were identified from the summary statistics of the genome-wide association studies of 27 blood traits and 27 cancer types and subtypes, applying the conditional/conjunctional false-discovery rate approach. Analysis of genomic positions, expression quantitative trait loci, enhancers, regulatory marks, functionally defined gene sets, and bulk- and single-cell expression profiles predicted the biological impact of pleiotropic variants. Plasma small RNAs were sequenced to assess association with cancer diagnosis. The study identified 4093 common genetic variants, involving 1248 gene loci, that contributed to blood-cancer pleiotropism. Genomic hotspots of pleiotropism include chromosomal regions 5p15-TERT and 6p21-HLA. Genes whose products are involved in regulating telomere length are found to be enriched in pleiotropic variants. Pleiotropic gene candidates are frequently linked to transcriptional programs that regulate hematopoiesis and define progenitor cell states of immune system development. Perturbation of the myeloid lineage is indicated by pleiotropic associations with defined master regulators and cell alterations. Eosinophil count is inversely associated with cancer risk. A high frequency of pleiotropic associations is also centered on the regulation of small noncoding Y-RNAs. Predicted pleiotropic Y-RNAs show specific regulatory marks and are overabundant in the normal tissue and blood of cancer patients. Analysis of plasma small RNAs in women who developed breast cancer indicates there is an overabundance of Y-RNA preceding neoplasm diagnosis. This study reveals extensive pleiotropism between blood traits and cancer risk. Pleiotropism is linked to factors and processes involved in hematopoietic development and immune system function, including components of the major histocompatibility complexes, and regulators of telomere length and myeloid lineage. Deregulation of Y-RNAs is also associated with pleiotropism. Overexpression of these elements might indicate increased cancer risk.</description><identifier>ISSN: 1756-994X</identifier><identifier>EISSN: 1756-994X</identifier><identifier>DOI: 10.1186/s13073-024-01294-8</identifier><identifier>PMID: 38308367</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Blood ; Blood tests ; Blood trait ; Body mass index ; Breast cancer ; Cancer ; Carcinogenesis ; Chromosome 5 ; Chromosome 6 ; Development and progression ; Diagnosis ; Enhancers ; Eosinophil ; Gene loci ; Genes ; Genetic aspects ; Genetic diversity ; Genetic transcription ; Genome-wide association studies ; Genomes ; Genomic analysis ; Genomics ; Genotype &amp; phenotype ; Health aspects ; Hematopoiesis ; Hemopoiesis ; Immune system ; Leukocytes ; Leukocytes (eosinophilic) ; Medical diagnosis ; Myeloid ; Oncology, Experimental ; Pleiotropy ; Progenitor cells ; Prostate ; Quantitative genetics ; Quantitative trait loci ; Risk factors ; RNA ; Software ; Statistical analysis ; Telomeres</subject><ispartof>Genome medicine, 2024-02, Vol.16 (1), p.21-22, Article 21</ispartof><rights>2024. The Author(s).</rights><rights>COPYRIGHT 2024 BioMed Central Ltd.</rights><rights>2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c539t-43be1c09d03b522c37ee50fbef1feea4b340e4c6a75b97f442283cd7b3e1520a3</citedby><cites>FETCH-LOGICAL-c539t-43be1c09d03b522c37ee50fbef1feea4b340e4c6a75b97f442283cd7b3e1520a3</cites><orcidid>0000-0003-3222-4044</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2925638096?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,36994,44571</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38308367$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pardo-Cea, Miguel Angel</creatorcontrib><creatorcontrib>Farré, Xavier</creatorcontrib><creatorcontrib>Esteve, Anna</creatorcontrib><creatorcontrib>Palade, Joanna</creatorcontrib><creatorcontrib>Espín, Roderic</creatorcontrib><creatorcontrib>Mateo, Francesca</creatorcontrib><creatorcontrib>Alsop, Eric</creatorcontrib><creatorcontrib>Alorda, Marc</creatorcontrib><creatorcontrib>Blay, Natalia</creatorcontrib><creatorcontrib>Baiges, Alexandra</creatorcontrib><creatorcontrib>Shabbir, Arzoo</creatorcontrib><creatorcontrib>Comellas, Francesc</creatorcontrib><creatorcontrib>Gómez, Antonio</creatorcontrib><creatorcontrib>Arnan, Montserrat</creatorcontrib><creatorcontrib>Teulé, Alex</creatorcontrib><creatorcontrib>Salinas, Monica</creatorcontrib><creatorcontrib>Berrocal, Laura</creatorcontrib><creatorcontrib>Brunet, Joan</creatorcontrib><creatorcontrib>Rofes, Paula</creatorcontrib><creatorcontrib>Lázaro, Conxi</creatorcontrib><creatorcontrib>Conesa, Miquel</creatorcontrib><creatorcontrib>Rojas, Juan Jose</creatorcontrib><creatorcontrib>Velten, Lars</creatorcontrib><creatorcontrib>Fendler, Wojciech</creatorcontrib><creatorcontrib>Smyczynska, Urszula</creatorcontrib><creatorcontrib>Chowdhury, Dipanjan</creatorcontrib><creatorcontrib>Zeng, Yong</creatorcontrib><creatorcontrib>He, Housheng Hansen</creatorcontrib><creatorcontrib>Li, Rong</creatorcontrib><creatorcontrib>Van Keuren-Jensen, Kendall</creatorcontrib><creatorcontrib>de Cid, Rafael</creatorcontrib><creatorcontrib>Pujana, Miquel Angel</creatorcontrib><title>Biological basis of extensive pleiotropy between blood traits and cancer risk</title><title>Genome medicine</title><addtitle>Genome Med</addtitle><description>The immune system has a central role in preventing carcinogenesis. Alteration of systemic immune cell levels may increase cancer risk. However, the extent to which common genetic variation influences blood traits and cancer risk remains largely undetermined. Here, we identify pleiotropic variants and predict their underlying molecular and cellular alterations. Multivariate Cox regression was used to evaluate associations between blood traits and cancer diagnosis in cases in the UK Biobank. Shared genetic variants were identified from the summary statistics of the genome-wide association studies of 27 blood traits and 27 cancer types and subtypes, applying the conditional/conjunctional false-discovery rate approach. Analysis of genomic positions, expression quantitative trait loci, enhancers, regulatory marks, functionally defined gene sets, and bulk- and single-cell expression profiles predicted the biological impact of pleiotropic variants. Plasma small RNAs were sequenced to assess association with cancer diagnosis. The study identified 4093 common genetic variants, involving 1248 gene loci, that contributed to blood-cancer pleiotropism. Genomic hotspots of pleiotropism include chromosomal regions 5p15-TERT and 6p21-HLA. Genes whose products are involved in regulating telomere length are found to be enriched in pleiotropic variants. Pleiotropic gene candidates are frequently linked to transcriptional programs that regulate hematopoiesis and define progenitor cell states of immune system development. Perturbation of the myeloid lineage is indicated by pleiotropic associations with defined master regulators and cell alterations. Eosinophil count is inversely associated with cancer risk. A high frequency of pleiotropic associations is also centered on the regulation of small noncoding Y-RNAs. Predicted pleiotropic Y-RNAs show specific regulatory marks and are overabundant in the normal tissue and blood of cancer patients. Analysis of plasma small RNAs in women who developed breast cancer indicates there is an overabundance of Y-RNA preceding neoplasm diagnosis. This study reveals extensive pleiotropism between blood traits and cancer risk. Pleiotropism is linked to factors and processes involved in hematopoietic development and immune system function, including components of the major histocompatibility complexes, and regulators of telomere length and myeloid lineage. Deregulation of Y-RNAs is also associated with pleiotropism. Overexpression of these elements might indicate increased cancer risk.</description><subject>Blood</subject><subject>Blood tests</subject><subject>Blood trait</subject><subject>Body mass index</subject><subject>Breast cancer</subject><subject>Cancer</subject><subject>Carcinogenesis</subject><subject>Chromosome 5</subject><subject>Chromosome 6</subject><subject>Development and progression</subject><subject>Diagnosis</subject><subject>Enhancers</subject><subject>Eosinophil</subject><subject>Gene loci</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic diversity</subject><subject>Genetic transcription</subject><subject>Genome-wide association studies</subject><subject>Genomes</subject><subject>Genomic analysis</subject><subject>Genomics</subject><subject>Genotype &amp; phenotype</subject><subject>Health aspects</subject><subject>Hematopoiesis</subject><subject>Hemopoiesis</subject><subject>Immune system</subject><subject>Leukocytes</subject><subject>Leukocytes (eosinophilic)</subject><subject>Medical diagnosis</subject><subject>Myeloid</subject><subject>Oncology, Experimental</subject><subject>Pleiotropy</subject><subject>Progenitor cells</subject><subject>Prostate</subject><subject>Quantitative genetics</subject><subject>Quantitative trait loci</subject><subject>Risk factors</subject><subject>RNA</subject><subject>Software</subject><subject>Statistical analysis</subject><subject>Telomeres</subject><issn>1756-994X</issn><issn>1756-994X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk1rFTEYhQdRbK3-ARcyIIibqfmcJMu2-FGouFFwF5LMm9tccyfXJKP235vbW2srkkXCy3NOeA-n655jdIyxHN8UTJGgAyJsQJgoNsgH3SEWfByUYl8f3nkfdE9KWSM0MsLE4-6ASookHcVh9_E0pJhWwZnYW1NC6ZPv4VeFuYQf0G8jhFRz2l71FupPgLm3MaWpr9mEWnozT70zs4Pc51C-Pe0eeRMLPLu5j7ov795-PvswXHx6f352cjE4TlUdGLWAHVITopYT4qgA4Mhb8NgDGGYpQ8DcaAS3SnjGCJHUTcJSwJwgQ4-6873vlMxab3PYmHylkwn6epDySptcg4uguZeOO0qV9ZRxjlscyEqkpPOSmnFqXq_3Xtucvi9Qqt6E4iBGM0NaiiaKEMbUKHhDX_6DrtOS57bpjuIjbb7jX2pl2v9h9i1A43am-kRIgpVkDDfq-D9UOxNsgksz-NDm9wSv7gguwcR6WVJcakhzuQ-SPehyKiWDvw0II70rjt4XR7fi6OviaNlEL25WW-wGplvJn6bQ37auuxU</recordid><startdate>20240202</startdate><enddate>20240202</enddate><creator>Pardo-Cea, Miguel Angel</creator><creator>Farré, Xavier</creator><creator>Esteve, Anna</creator><creator>Palade, Joanna</creator><creator>Espín, Roderic</creator><creator>Mateo, Francesca</creator><creator>Alsop, Eric</creator><creator>Alorda, Marc</creator><creator>Blay, Natalia</creator><creator>Baiges, Alexandra</creator><creator>Shabbir, Arzoo</creator><creator>Comellas, Francesc</creator><creator>Gómez, Antonio</creator><creator>Arnan, Montserrat</creator><creator>Teulé, Alex</creator><creator>Salinas, Monica</creator><creator>Berrocal, Laura</creator><creator>Brunet, Joan</creator><creator>Rofes, Paula</creator><creator>Lázaro, Conxi</creator><creator>Conesa, Miquel</creator><creator>Rojas, Juan Jose</creator><creator>Velten, Lars</creator><creator>Fendler, Wojciech</creator><creator>Smyczynska, Urszula</creator><creator>Chowdhury, Dipanjan</creator><creator>Zeng, Yong</creator><creator>He, Housheng Hansen</creator><creator>Li, Rong</creator><creator>Van Keuren-Jensen, Kendall</creator><creator>de Cid, Rafael</creator><creator>Pujana, Miquel Angel</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3222-4044</orcidid></search><sort><creationdate>20240202</creationdate><title>Biological basis of extensive pleiotropy between blood traits and cancer risk</title><author>Pardo-Cea, Miguel Angel ; Farré, Xavier ; Esteve, Anna ; Palade, Joanna ; Espín, Roderic ; Mateo, Francesca ; Alsop, Eric ; Alorda, Marc ; Blay, Natalia ; Baiges, Alexandra ; Shabbir, Arzoo ; Comellas, Francesc ; Gómez, Antonio ; Arnan, Montserrat ; Teulé, Alex ; Salinas, Monica ; Berrocal, Laura ; Brunet, Joan ; Rofes, Paula ; Lázaro, Conxi ; Conesa, Miquel ; Rojas, Juan Jose ; Velten, Lars ; Fendler, Wojciech ; Smyczynska, Urszula ; Chowdhury, Dipanjan ; Zeng, Yong ; He, Housheng Hansen ; Li, Rong ; Van Keuren-Jensen, Kendall ; de Cid, Rafael ; Pujana, Miquel Angel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c539t-43be1c09d03b522c37ee50fbef1feea4b340e4c6a75b97f442283cd7b3e1520a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Blood</topic><topic>Blood tests</topic><topic>Blood trait</topic><topic>Body mass index</topic><topic>Breast cancer</topic><topic>Cancer</topic><topic>Carcinogenesis</topic><topic>Chromosome 5</topic><topic>Chromosome 6</topic><topic>Development and progression</topic><topic>Diagnosis</topic><topic>Enhancers</topic><topic>Eosinophil</topic><topic>Gene loci</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic diversity</topic><topic>Genetic transcription</topic><topic>Genome-wide association studies</topic><topic>Genomes</topic><topic>Genomic analysis</topic><topic>Genomics</topic><topic>Genotype &amp; phenotype</topic><topic>Health aspects</topic><topic>Hematopoiesis</topic><topic>Hemopoiesis</topic><topic>Immune system</topic><topic>Leukocytes</topic><topic>Leukocytes (eosinophilic)</topic><topic>Medical diagnosis</topic><topic>Myeloid</topic><topic>Oncology, Experimental</topic><topic>Pleiotropy</topic><topic>Progenitor cells</topic><topic>Prostate</topic><topic>Quantitative genetics</topic><topic>Quantitative trait loci</topic><topic>Risk factors</topic><topic>RNA</topic><topic>Software</topic><topic>Statistical analysis</topic><topic>Telomeres</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pardo-Cea, Miguel Angel</creatorcontrib><creatorcontrib>Farré, Xavier</creatorcontrib><creatorcontrib>Esteve, Anna</creatorcontrib><creatorcontrib>Palade, Joanna</creatorcontrib><creatorcontrib>Espín, Roderic</creatorcontrib><creatorcontrib>Mateo, Francesca</creatorcontrib><creatorcontrib>Alsop, Eric</creatorcontrib><creatorcontrib>Alorda, Marc</creatorcontrib><creatorcontrib>Blay, Natalia</creatorcontrib><creatorcontrib>Baiges, Alexandra</creatorcontrib><creatorcontrib>Shabbir, Arzoo</creatorcontrib><creatorcontrib>Comellas, Francesc</creatorcontrib><creatorcontrib>Gómez, Antonio</creatorcontrib><creatorcontrib>Arnan, Montserrat</creatorcontrib><creatorcontrib>Teulé, Alex</creatorcontrib><creatorcontrib>Salinas, Monica</creatorcontrib><creatorcontrib>Berrocal, Laura</creatorcontrib><creatorcontrib>Brunet, Joan</creatorcontrib><creatorcontrib>Rofes, Paula</creatorcontrib><creatorcontrib>Lázaro, Conxi</creatorcontrib><creatorcontrib>Conesa, Miquel</creatorcontrib><creatorcontrib>Rojas, Juan Jose</creatorcontrib><creatorcontrib>Velten, Lars</creatorcontrib><creatorcontrib>Fendler, Wojciech</creatorcontrib><creatorcontrib>Smyczynska, Urszula</creatorcontrib><creatorcontrib>Chowdhury, Dipanjan</creatorcontrib><creatorcontrib>Zeng, Yong</creatorcontrib><creatorcontrib>He, Housheng Hansen</creatorcontrib><creatorcontrib>Li, Rong</creatorcontrib><creatorcontrib>Van Keuren-Jensen, Kendall</creatorcontrib><creatorcontrib>de Cid, Rafael</creatorcontrib><creatorcontrib>Pujana, Miquel Angel</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Genome medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pardo-Cea, Miguel Angel</au><au>Farré, Xavier</au><au>Esteve, Anna</au><au>Palade, Joanna</au><au>Espín, Roderic</au><au>Mateo, Francesca</au><au>Alsop, Eric</au><au>Alorda, Marc</au><au>Blay, Natalia</au><au>Baiges, Alexandra</au><au>Shabbir, Arzoo</au><au>Comellas, Francesc</au><au>Gómez, Antonio</au><au>Arnan, Montserrat</au><au>Teulé, Alex</au><au>Salinas, Monica</au><au>Berrocal, Laura</au><au>Brunet, Joan</au><au>Rofes, Paula</au><au>Lázaro, Conxi</au><au>Conesa, Miquel</au><au>Rojas, Juan Jose</au><au>Velten, Lars</au><au>Fendler, Wojciech</au><au>Smyczynska, Urszula</au><au>Chowdhury, Dipanjan</au><au>Zeng, Yong</au><au>He, Housheng Hansen</au><au>Li, Rong</au><au>Van Keuren-Jensen, Kendall</au><au>de Cid, Rafael</au><au>Pujana, Miquel Angel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biological basis of extensive pleiotropy between blood traits and cancer risk</atitle><jtitle>Genome medicine</jtitle><addtitle>Genome Med</addtitle><date>2024-02-02</date><risdate>2024</risdate><volume>16</volume><issue>1</issue><spage>21</spage><epage>22</epage><pages>21-22</pages><artnum>21</artnum><issn>1756-994X</issn><eissn>1756-994X</eissn><abstract>The immune system has a central role in preventing carcinogenesis. Alteration of systemic immune cell levels may increase cancer risk. However, the extent to which common genetic variation influences blood traits and cancer risk remains largely undetermined. Here, we identify pleiotropic variants and predict their underlying molecular and cellular alterations. Multivariate Cox regression was used to evaluate associations between blood traits and cancer diagnosis in cases in the UK Biobank. Shared genetic variants were identified from the summary statistics of the genome-wide association studies of 27 blood traits and 27 cancer types and subtypes, applying the conditional/conjunctional false-discovery rate approach. Analysis of genomic positions, expression quantitative trait loci, enhancers, regulatory marks, functionally defined gene sets, and bulk- and single-cell expression profiles predicted the biological impact of pleiotropic variants. Plasma small RNAs were sequenced to assess association with cancer diagnosis. The study identified 4093 common genetic variants, involving 1248 gene loci, that contributed to blood-cancer pleiotropism. Genomic hotspots of pleiotropism include chromosomal regions 5p15-TERT and 6p21-HLA. Genes whose products are involved in regulating telomere length are found to be enriched in pleiotropic variants. Pleiotropic gene candidates are frequently linked to transcriptional programs that regulate hematopoiesis and define progenitor cell states of immune system development. Perturbation of the myeloid lineage is indicated by pleiotropic associations with defined master regulators and cell alterations. Eosinophil count is inversely associated with cancer risk. A high frequency of pleiotropic associations is also centered on the regulation of small noncoding Y-RNAs. Predicted pleiotropic Y-RNAs show specific regulatory marks and are overabundant in the normal tissue and blood of cancer patients. Analysis of plasma small RNAs in women who developed breast cancer indicates there is an overabundance of Y-RNA preceding neoplasm diagnosis. This study reveals extensive pleiotropism between blood traits and cancer risk. Pleiotropism is linked to factors and processes involved in hematopoietic development and immune system function, including components of the major histocompatibility complexes, and regulators of telomere length and myeloid lineage. Deregulation of Y-RNAs is also associated with pleiotropism. Overexpression of these elements might indicate increased cancer risk.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>38308367</pmid><doi>10.1186/s13073-024-01294-8</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-3222-4044</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1756-994X
ispartof Genome medicine, 2024-02, Vol.16 (1), p.21-22, Article 21
issn 1756-994X
1756-994X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5f8c5c339bf345519940b8098cf83a6d
source Publicly Available Content Database; PubMed Central
subjects Blood
Blood tests
Blood trait
Body mass index
Breast cancer
Cancer
Carcinogenesis
Chromosome 5
Chromosome 6
Development and progression
Diagnosis
Enhancers
Eosinophil
Gene loci
Genes
Genetic aspects
Genetic diversity
Genetic transcription
Genome-wide association studies
Genomes
Genomic analysis
Genomics
Genotype & phenotype
Health aspects
Hematopoiesis
Hemopoiesis
Immune system
Leukocytes
Leukocytes (eosinophilic)
Medical diagnosis
Myeloid
Oncology, Experimental
Pleiotropy
Progenitor cells
Prostate
Quantitative genetics
Quantitative trait loci
Risk factors
RNA
Software
Statistical analysis
Telomeres
title Biological basis of extensive pleiotropy between blood traits and cancer risk
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A43%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biological%20basis%20of%20extensive%20pleiotropy%20between%20blood%20traits%20and%20cancer%20risk&rft.jtitle=Genome%20medicine&rft.au=Pardo-Cea,%20Miguel%20Angel&rft.date=2024-02-02&rft.volume=16&rft.issue=1&rft.spage=21&rft.epage=22&rft.pages=21-22&rft.artnum=21&rft.issn=1756-994X&rft.eissn=1756-994X&rft_id=info:doi/10.1186/s13073-024-01294-8&rft_dat=%3Cgale_doaj_%3EA782198441%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c539t-43be1c09d03b522c37ee50fbef1feea4b340e4c6a75b97f442283cd7b3e1520a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2925638096&rft_id=info:pmid/38308367&rft_galeid=A782198441&rfr_iscdi=true