Loading…
Biological basis of extensive pleiotropy between blood traits and cancer risk
The immune system has a central role in preventing carcinogenesis. Alteration of systemic immune cell levels may increase cancer risk. However, the extent to which common genetic variation influences blood traits and cancer risk remains largely undetermined. Here, we identify pleiotropic variants an...
Saved in:
Published in: | Genome medicine 2024-02, Vol.16 (1), p.21-22, Article 21 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c539t-43be1c09d03b522c37ee50fbef1feea4b340e4c6a75b97f442283cd7b3e1520a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c539t-43be1c09d03b522c37ee50fbef1feea4b340e4c6a75b97f442283cd7b3e1520a3 |
container_end_page | 22 |
container_issue | 1 |
container_start_page | 21 |
container_title | Genome medicine |
container_volume | 16 |
creator | Pardo-Cea, Miguel Angel Farré, Xavier Esteve, Anna Palade, Joanna Espín, Roderic Mateo, Francesca Alsop, Eric Alorda, Marc Blay, Natalia Baiges, Alexandra Shabbir, Arzoo Comellas, Francesc Gómez, Antonio Arnan, Montserrat Teulé, Alex Salinas, Monica Berrocal, Laura Brunet, Joan Rofes, Paula Lázaro, Conxi Conesa, Miquel Rojas, Juan Jose Velten, Lars Fendler, Wojciech Smyczynska, Urszula Chowdhury, Dipanjan Zeng, Yong He, Housheng Hansen Li, Rong Van Keuren-Jensen, Kendall de Cid, Rafael Pujana, Miquel Angel |
description | The immune system has a central role in preventing carcinogenesis. Alteration of systemic immune cell levels may increase cancer risk. However, the extent to which common genetic variation influences blood traits and cancer risk remains largely undetermined. Here, we identify pleiotropic variants and predict their underlying molecular and cellular alterations.
Multivariate Cox regression was used to evaluate associations between blood traits and cancer diagnosis in cases in the UK Biobank. Shared genetic variants were identified from the summary statistics of the genome-wide association studies of 27 blood traits and 27 cancer types and subtypes, applying the conditional/conjunctional false-discovery rate approach. Analysis of genomic positions, expression quantitative trait loci, enhancers, regulatory marks, functionally defined gene sets, and bulk- and single-cell expression profiles predicted the biological impact of pleiotropic variants. Plasma small RNAs were sequenced to assess association with cancer diagnosis.
The study identified 4093 common genetic variants, involving 1248 gene loci, that contributed to blood-cancer pleiotropism. Genomic hotspots of pleiotropism include chromosomal regions 5p15-TERT and 6p21-HLA. Genes whose products are involved in regulating telomere length are found to be enriched in pleiotropic variants. Pleiotropic gene candidates are frequently linked to transcriptional programs that regulate hematopoiesis and define progenitor cell states of immune system development. Perturbation of the myeloid lineage is indicated by pleiotropic associations with defined master regulators and cell alterations. Eosinophil count is inversely associated with cancer risk. A high frequency of pleiotropic associations is also centered on the regulation of small noncoding Y-RNAs. Predicted pleiotropic Y-RNAs show specific regulatory marks and are overabundant in the normal tissue and blood of cancer patients. Analysis of plasma small RNAs in women who developed breast cancer indicates there is an overabundance of Y-RNA preceding neoplasm diagnosis.
This study reveals extensive pleiotropism between blood traits and cancer risk. Pleiotropism is linked to factors and processes involved in hematopoietic development and immune system function, including components of the major histocompatibility complexes, and regulators of telomere length and myeloid lineage. Deregulation of Y-RNAs is also associated with pleiotropism. Overexpression of these eleme |
doi_str_mv | 10.1186/s13073-024-01294-8 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5f8c5c339bf345519940b8098cf83a6d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A782198441</galeid><doaj_id>oai_doaj_org_article_5f8c5c339bf345519940b8098cf83a6d</doaj_id><sourcerecordid>A782198441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c539t-43be1c09d03b522c37ee50fbef1feea4b340e4c6a75b97f442283cd7b3e1520a3</originalsourceid><addsrcrecordid>eNptkk1rFTEYhQdRbK3-ARcyIIibqfmcJMu2-FGouFFwF5LMm9tccyfXJKP235vbW2srkkXCy3NOeA-n655jdIyxHN8UTJGgAyJsQJgoNsgH3SEWfByUYl8f3nkfdE9KWSM0MsLE4-6ASookHcVh9_E0pJhWwZnYW1NC6ZPv4VeFuYQf0G8jhFRz2l71FupPgLm3MaWpr9mEWnozT70zs4Pc51C-Pe0eeRMLPLu5j7ov795-PvswXHx6f352cjE4TlUdGLWAHVITopYT4qgA4Mhb8NgDGGYpQ8DcaAS3SnjGCJHUTcJSwJwgQ4-6873vlMxab3PYmHylkwn6epDySptcg4uguZeOO0qV9ZRxjlscyEqkpPOSmnFqXq_3Xtucvi9Qqt6E4iBGM0NaiiaKEMbUKHhDX_6DrtOS57bpjuIjbb7jX2pl2v9h9i1A43am-kRIgpVkDDfq-D9UOxNsgksz-NDm9wSv7gguwcR6WVJcakhzuQ-SPehyKiWDvw0II70rjt4XR7fi6OviaNlEL25WW-wGplvJn6bQ37auuxU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2925638096</pqid></control><display><type>article</type><title>Biological basis of extensive pleiotropy between blood traits and cancer risk</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Pardo-Cea, Miguel Angel ; Farré, Xavier ; Esteve, Anna ; Palade, Joanna ; Espín, Roderic ; Mateo, Francesca ; Alsop, Eric ; Alorda, Marc ; Blay, Natalia ; Baiges, Alexandra ; Shabbir, Arzoo ; Comellas, Francesc ; Gómez, Antonio ; Arnan, Montserrat ; Teulé, Alex ; Salinas, Monica ; Berrocal, Laura ; Brunet, Joan ; Rofes, Paula ; Lázaro, Conxi ; Conesa, Miquel ; Rojas, Juan Jose ; Velten, Lars ; Fendler, Wojciech ; Smyczynska, Urszula ; Chowdhury, Dipanjan ; Zeng, Yong ; He, Housheng Hansen ; Li, Rong ; Van Keuren-Jensen, Kendall ; de Cid, Rafael ; Pujana, Miquel Angel</creator><creatorcontrib>Pardo-Cea, Miguel Angel ; Farré, Xavier ; Esteve, Anna ; Palade, Joanna ; Espín, Roderic ; Mateo, Francesca ; Alsop, Eric ; Alorda, Marc ; Blay, Natalia ; Baiges, Alexandra ; Shabbir, Arzoo ; Comellas, Francesc ; Gómez, Antonio ; Arnan, Montserrat ; Teulé, Alex ; Salinas, Monica ; Berrocal, Laura ; Brunet, Joan ; Rofes, Paula ; Lázaro, Conxi ; Conesa, Miquel ; Rojas, Juan Jose ; Velten, Lars ; Fendler, Wojciech ; Smyczynska, Urszula ; Chowdhury, Dipanjan ; Zeng, Yong ; He, Housheng Hansen ; Li, Rong ; Van Keuren-Jensen, Kendall ; de Cid, Rafael ; Pujana, Miquel Angel</creatorcontrib><description>The immune system has a central role in preventing carcinogenesis. Alteration of systemic immune cell levels may increase cancer risk. However, the extent to which common genetic variation influences blood traits and cancer risk remains largely undetermined. Here, we identify pleiotropic variants and predict their underlying molecular and cellular alterations.
Multivariate Cox regression was used to evaluate associations between blood traits and cancer diagnosis in cases in the UK Biobank. Shared genetic variants were identified from the summary statistics of the genome-wide association studies of 27 blood traits and 27 cancer types and subtypes, applying the conditional/conjunctional false-discovery rate approach. Analysis of genomic positions, expression quantitative trait loci, enhancers, regulatory marks, functionally defined gene sets, and bulk- and single-cell expression profiles predicted the biological impact of pleiotropic variants. Plasma small RNAs were sequenced to assess association with cancer diagnosis.
The study identified 4093 common genetic variants, involving 1248 gene loci, that contributed to blood-cancer pleiotropism. Genomic hotspots of pleiotropism include chromosomal regions 5p15-TERT and 6p21-HLA. Genes whose products are involved in regulating telomere length are found to be enriched in pleiotropic variants. Pleiotropic gene candidates are frequently linked to transcriptional programs that regulate hematopoiesis and define progenitor cell states of immune system development. Perturbation of the myeloid lineage is indicated by pleiotropic associations with defined master regulators and cell alterations. Eosinophil count is inversely associated with cancer risk. A high frequency of pleiotropic associations is also centered on the regulation of small noncoding Y-RNAs. Predicted pleiotropic Y-RNAs show specific regulatory marks and are overabundant in the normal tissue and blood of cancer patients. Analysis of plasma small RNAs in women who developed breast cancer indicates there is an overabundance of Y-RNA preceding neoplasm diagnosis.
This study reveals extensive pleiotropism between blood traits and cancer risk. Pleiotropism is linked to factors and processes involved in hematopoietic development and immune system function, including components of the major histocompatibility complexes, and regulators of telomere length and myeloid lineage. Deregulation of Y-RNAs is also associated with pleiotropism. Overexpression of these elements might indicate increased cancer risk.</description><identifier>ISSN: 1756-994X</identifier><identifier>EISSN: 1756-994X</identifier><identifier>DOI: 10.1186/s13073-024-01294-8</identifier><identifier>PMID: 38308367</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Blood ; Blood tests ; Blood trait ; Body mass index ; Breast cancer ; Cancer ; Carcinogenesis ; Chromosome 5 ; Chromosome 6 ; Development and progression ; Diagnosis ; Enhancers ; Eosinophil ; Gene loci ; Genes ; Genetic aspects ; Genetic diversity ; Genetic transcription ; Genome-wide association studies ; Genomes ; Genomic analysis ; Genomics ; Genotype & phenotype ; Health aspects ; Hematopoiesis ; Hemopoiesis ; Immune system ; Leukocytes ; Leukocytes (eosinophilic) ; Medical diagnosis ; Myeloid ; Oncology, Experimental ; Pleiotropy ; Progenitor cells ; Prostate ; Quantitative genetics ; Quantitative trait loci ; Risk factors ; RNA ; Software ; Statistical analysis ; Telomeres</subject><ispartof>Genome medicine, 2024-02, Vol.16 (1), p.21-22, Article 21</ispartof><rights>2024. The Author(s).</rights><rights>COPYRIGHT 2024 BioMed Central Ltd.</rights><rights>2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c539t-43be1c09d03b522c37ee50fbef1feea4b340e4c6a75b97f442283cd7b3e1520a3</citedby><cites>FETCH-LOGICAL-c539t-43be1c09d03b522c37ee50fbef1feea4b340e4c6a75b97f442283cd7b3e1520a3</cites><orcidid>0000-0003-3222-4044</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2925638096?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,36994,44571</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38308367$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pardo-Cea, Miguel Angel</creatorcontrib><creatorcontrib>Farré, Xavier</creatorcontrib><creatorcontrib>Esteve, Anna</creatorcontrib><creatorcontrib>Palade, Joanna</creatorcontrib><creatorcontrib>Espín, Roderic</creatorcontrib><creatorcontrib>Mateo, Francesca</creatorcontrib><creatorcontrib>Alsop, Eric</creatorcontrib><creatorcontrib>Alorda, Marc</creatorcontrib><creatorcontrib>Blay, Natalia</creatorcontrib><creatorcontrib>Baiges, Alexandra</creatorcontrib><creatorcontrib>Shabbir, Arzoo</creatorcontrib><creatorcontrib>Comellas, Francesc</creatorcontrib><creatorcontrib>Gómez, Antonio</creatorcontrib><creatorcontrib>Arnan, Montserrat</creatorcontrib><creatorcontrib>Teulé, Alex</creatorcontrib><creatorcontrib>Salinas, Monica</creatorcontrib><creatorcontrib>Berrocal, Laura</creatorcontrib><creatorcontrib>Brunet, Joan</creatorcontrib><creatorcontrib>Rofes, Paula</creatorcontrib><creatorcontrib>Lázaro, Conxi</creatorcontrib><creatorcontrib>Conesa, Miquel</creatorcontrib><creatorcontrib>Rojas, Juan Jose</creatorcontrib><creatorcontrib>Velten, Lars</creatorcontrib><creatorcontrib>Fendler, Wojciech</creatorcontrib><creatorcontrib>Smyczynska, Urszula</creatorcontrib><creatorcontrib>Chowdhury, Dipanjan</creatorcontrib><creatorcontrib>Zeng, Yong</creatorcontrib><creatorcontrib>He, Housheng Hansen</creatorcontrib><creatorcontrib>Li, Rong</creatorcontrib><creatorcontrib>Van Keuren-Jensen, Kendall</creatorcontrib><creatorcontrib>de Cid, Rafael</creatorcontrib><creatorcontrib>Pujana, Miquel Angel</creatorcontrib><title>Biological basis of extensive pleiotropy between blood traits and cancer risk</title><title>Genome medicine</title><addtitle>Genome Med</addtitle><description>The immune system has a central role in preventing carcinogenesis. Alteration of systemic immune cell levels may increase cancer risk. However, the extent to which common genetic variation influences blood traits and cancer risk remains largely undetermined. Here, we identify pleiotropic variants and predict their underlying molecular and cellular alterations.
Multivariate Cox regression was used to evaluate associations between blood traits and cancer diagnosis in cases in the UK Biobank. Shared genetic variants were identified from the summary statistics of the genome-wide association studies of 27 blood traits and 27 cancer types and subtypes, applying the conditional/conjunctional false-discovery rate approach. Analysis of genomic positions, expression quantitative trait loci, enhancers, regulatory marks, functionally defined gene sets, and bulk- and single-cell expression profiles predicted the biological impact of pleiotropic variants. Plasma small RNAs were sequenced to assess association with cancer diagnosis.
The study identified 4093 common genetic variants, involving 1248 gene loci, that contributed to blood-cancer pleiotropism. Genomic hotspots of pleiotropism include chromosomal regions 5p15-TERT and 6p21-HLA. Genes whose products are involved in regulating telomere length are found to be enriched in pleiotropic variants. Pleiotropic gene candidates are frequently linked to transcriptional programs that regulate hematopoiesis and define progenitor cell states of immune system development. Perturbation of the myeloid lineage is indicated by pleiotropic associations with defined master regulators and cell alterations. Eosinophil count is inversely associated with cancer risk. A high frequency of pleiotropic associations is also centered on the regulation of small noncoding Y-RNAs. Predicted pleiotropic Y-RNAs show specific regulatory marks and are overabundant in the normal tissue and blood of cancer patients. Analysis of plasma small RNAs in women who developed breast cancer indicates there is an overabundance of Y-RNA preceding neoplasm diagnosis.
This study reveals extensive pleiotropism between blood traits and cancer risk. Pleiotropism is linked to factors and processes involved in hematopoietic development and immune system function, including components of the major histocompatibility complexes, and regulators of telomere length and myeloid lineage. Deregulation of Y-RNAs is also associated with pleiotropism. Overexpression of these elements might indicate increased cancer risk.</description><subject>Blood</subject><subject>Blood tests</subject><subject>Blood trait</subject><subject>Body mass index</subject><subject>Breast cancer</subject><subject>Cancer</subject><subject>Carcinogenesis</subject><subject>Chromosome 5</subject><subject>Chromosome 6</subject><subject>Development and progression</subject><subject>Diagnosis</subject><subject>Enhancers</subject><subject>Eosinophil</subject><subject>Gene loci</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic diversity</subject><subject>Genetic transcription</subject><subject>Genome-wide association studies</subject><subject>Genomes</subject><subject>Genomic analysis</subject><subject>Genomics</subject><subject>Genotype & phenotype</subject><subject>Health aspects</subject><subject>Hematopoiesis</subject><subject>Hemopoiesis</subject><subject>Immune system</subject><subject>Leukocytes</subject><subject>Leukocytes (eosinophilic)</subject><subject>Medical diagnosis</subject><subject>Myeloid</subject><subject>Oncology, Experimental</subject><subject>Pleiotropy</subject><subject>Progenitor cells</subject><subject>Prostate</subject><subject>Quantitative genetics</subject><subject>Quantitative trait loci</subject><subject>Risk factors</subject><subject>RNA</subject><subject>Software</subject><subject>Statistical analysis</subject><subject>Telomeres</subject><issn>1756-994X</issn><issn>1756-994X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkk1rFTEYhQdRbK3-ARcyIIibqfmcJMu2-FGouFFwF5LMm9tccyfXJKP235vbW2srkkXCy3NOeA-n655jdIyxHN8UTJGgAyJsQJgoNsgH3SEWfByUYl8f3nkfdE9KWSM0MsLE4-6ASookHcVh9_E0pJhWwZnYW1NC6ZPv4VeFuYQf0G8jhFRz2l71FupPgLm3MaWpr9mEWnozT70zs4Pc51C-Pe0eeRMLPLu5j7ov795-PvswXHx6f352cjE4TlUdGLWAHVITopYT4qgA4Mhb8NgDGGYpQ8DcaAS3SnjGCJHUTcJSwJwgQ4-6873vlMxab3PYmHylkwn6epDySptcg4uguZeOO0qV9ZRxjlscyEqkpPOSmnFqXq_3Xtucvi9Qqt6E4iBGM0NaiiaKEMbUKHhDX_6DrtOS57bpjuIjbb7jX2pl2v9h9i1A43am-kRIgpVkDDfq-D9UOxNsgksz-NDm9wSv7gguwcR6WVJcakhzuQ-SPehyKiWDvw0II70rjt4XR7fi6OviaNlEL25WW-wGplvJn6bQ37auuxU</recordid><startdate>20240202</startdate><enddate>20240202</enddate><creator>Pardo-Cea, Miguel Angel</creator><creator>Farré, Xavier</creator><creator>Esteve, Anna</creator><creator>Palade, Joanna</creator><creator>Espín, Roderic</creator><creator>Mateo, Francesca</creator><creator>Alsop, Eric</creator><creator>Alorda, Marc</creator><creator>Blay, Natalia</creator><creator>Baiges, Alexandra</creator><creator>Shabbir, Arzoo</creator><creator>Comellas, Francesc</creator><creator>Gómez, Antonio</creator><creator>Arnan, Montserrat</creator><creator>Teulé, Alex</creator><creator>Salinas, Monica</creator><creator>Berrocal, Laura</creator><creator>Brunet, Joan</creator><creator>Rofes, Paula</creator><creator>Lázaro, Conxi</creator><creator>Conesa, Miquel</creator><creator>Rojas, Juan Jose</creator><creator>Velten, Lars</creator><creator>Fendler, Wojciech</creator><creator>Smyczynska, Urszula</creator><creator>Chowdhury, Dipanjan</creator><creator>Zeng, Yong</creator><creator>He, Housheng Hansen</creator><creator>Li, Rong</creator><creator>Van Keuren-Jensen, Kendall</creator><creator>de Cid, Rafael</creator><creator>Pujana, Miquel Angel</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3222-4044</orcidid></search><sort><creationdate>20240202</creationdate><title>Biological basis of extensive pleiotropy between blood traits and cancer risk</title><author>Pardo-Cea, Miguel Angel ; Farré, Xavier ; Esteve, Anna ; Palade, Joanna ; Espín, Roderic ; Mateo, Francesca ; Alsop, Eric ; Alorda, Marc ; Blay, Natalia ; Baiges, Alexandra ; Shabbir, Arzoo ; Comellas, Francesc ; Gómez, Antonio ; Arnan, Montserrat ; Teulé, Alex ; Salinas, Monica ; Berrocal, Laura ; Brunet, Joan ; Rofes, Paula ; Lázaro, Conxi ; Conesa, Miquel ; Rojas, Juan Jose ; Velten, Lars ; Fendler, Wojciech ; Smyczynska, Urszula ; Chowdhury, Dipanjan ; Zeng, Yong ; He, Housheng Hansen ; Li, Rong ; Van Keuren-Jensen, Kendall ; de Cid, Rafael ; Pujana, Miquel Angel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c539t-43be1c09d03b522c37ee50fbef1feea4b340e4c6a75b97f442283cd7b3e1520a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Blood</topic><topic>Blood tests</topic><topic>Blood trait</topic><topic>Body mass index</topic><topic>Breast cancer</topic><topic>Cancer</topic><topic>Carcinogenesis</topic><topic>Chromosome 5</topic><topic>Chromosome 6</topic><topic>Development and progression</topic><topic>Diagnosis</topic><topic>Enhancers</topic><topic>Eosinophil</topic><topic>Gene loci</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic diversity</topic><topic>Genetic transcription</topic><topic>Genome-wide association studies</topic><topic>Genomes</topic><topic>Genomic analysis</topic><topic>Genomics</topic><topic>Genotype & phenotype</topic><topic>Health aspects</topic><topic>Hematopoiesis</topic><topic>Hemopoiesis</topic><topic>Immune system</topic><topic>Leukocytes</topic><topic>Leukocytes (eosinophilic)</topic><topic>Medical diagnosis</topic><topic>Myeloid</topic><topic>Oncology, Experimental</topic><topic>Pleiotropy</topic><topic>Progenitor cells</topic><topic>Prostate</topic><topic>Quantitative genetics</topic><topic>Quantitative trait loci</topic><topic>Risk factors</topic><topic>RNA</topic><topic>Software</topic><topic>Statistical analysis</topic><topic>Telomeres</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pardo-Cea, Miguel Angel</creatorcontrib><creatorcontrib>Farré, Xavier</creatorcontrib><creatorcontrib>Esteve, Anna</creatorcontrib><creatorcontrib>Palade, Joanna</creatorcontrib><creatorcontrib>Espín, Roderic</creatorcontrib><creatorcontrib>Mateo, Francesca</creatorcontrib><creatorcontrib>Alsop, Eric</creatorcontrib><creatorcontrib>Alorda, Marc</creatorcontrib><creatorcontrib>Blay, Natalia</creatorcontrib><creatorcontrib>Baiges, Alexandra</creatorcontrib><creatorcontrib>Shabbir, Arzoo</creatorcontrib><creatorcontrib>Comellas, Francesc</creatorcontrib><creatorcontrib>Gómez, Antonio</creatorcontrib><creatorcontrib>Arnan, Montserrat</creatorcontrib><creatorcontrib>Teulé, Alex</creatorcontrib><creatorcontrib>Salinas, Monica</creatorcontrib><creatorcontrib>Berrocal, Laura</creatorcontrib><creatorcontrib>Brunet, Joan</creatorcontrib><creatorcontrib>Rofes, Paula</creatorcontrib><creatorcontrib>Lázaro, Conxi</creatorcontrib><creatorcontrib>Conesa, Miquel</creatorcontrib><creatorcontrib>Rojas, Juan Jose</creatorcontrib><creatorcontrib>Velten, Lars</creatorcontrib><creatorcontrib>Fendler, Wojciech</creatorcontrib><creatorcontrib>Smyczynska, Urszula</creatorcontrib><creatorcontrib>Chowdhury, Dipanjan</creatorcontrib><creatorcontrib>Zeng, Yong</creatorcontrib><creatorcontrib>He, Housheng Hansen</creatorcontrib><creatorcontrib>Li, Rong</creatorcontrib><creatorcontrib>Van Keuren-Jensen, Kendall</creatorcontrib><creatorcontrib>de Cid, Rafael</creatorcontrib><creatorcontrib>Pujana, Miquel Angel</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Genome medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pardo-Cea, Miguel Angel</au><au>Farré, Xavier</au><au>Esteve, Anna</au><au>Palade, Joanna</au><au>Espín, Roderic</au><au>Mateo, Francesca</au><au>Alsop, Eric</au><au>Alorda, Marc</au><au>Blay, Natalia</au><au>Baiges, Alexandra</au><au>Shabbir, Arzoo</au><au>Comellas, Francesc</au><au>Gómez, Antonio</au><au>Arnan, Montserrat</au><au>Teulé, Alex</au><au>Salinas, Monica</au><au>Berrocal, Laura</au><au>Brunet, Joan</au><au>Rofes, Paula</au><au>Lázaro, Conxi</au><au>Conesa, Miquel</au><au>Rojas, Juan Jose</au><au>Velten, Lars</au><au>Fendler, Wojciech</au><au>Smyczynska, Urszula</au><au>Chowdhury, Dipanjan</au><au>Zeng, Yong</au><au>He, Housheng Hansen</au><au>Li, Rong</au><au>Van Keuren-Jensen, Kendall</au><au>de Cid, Rafael</au><au>Pujana, Miquel Angel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biological basis of extensive pleiotropy between blood traits and cancer risk</atitle><jtitle>Genome medicine</jtitle><addtitle>Genome Med</addtitle><date>2024-02-02</date><risdate>2024</risdate><volume>16</volume><issue>1</issue><spage>21</spage><epage>22</epage><pages>21-22</pages><artnum>21</artnum><issn>1756-994X</issn><eissn>1756-994X</eissn><abstract>The immune system has a central role in preventing carcinogenesis. Alteration of systemic immune cell levels may increase cancer risk. However, the extent to which common genetic variation influences blood traits and cancer risk remains largely undetermined. Here, we identify pleiotropic variants and predict their underlying molecular and cellular alterations.
Multivariate Cox regression was used to evaluate associations between blood traits and cancer diagnosis in cases in the UK Biobank. Shared genetic variants were identified from the summary statistics of the genome-wide association studies of 27 blood traits and 27 cancer types and subtypes, applying the conditional/conjunctional false-discovery rate approach. Analysis of genomic positions, expression quantitative trait loci, enhancers, regulatory marks, functionally defined gene sets, and bulk- and single-cell expression profiles predicted the biological impact of pleiotropic variants. Plasma small RNAs were sequenced to assess association with cancer diagnosis.
The study identified 4093 common genetic variants, involving 1248 gene loci, that contributed to blood-cancer pleiotropism. Genomic hotspots of pleiotropism include chromosomal regions 5p15-TERT and 6p21-HLA. Genes whose products are involved in regulating telomere length are found to be enriched in pleiotropic variants. Pleiotropic gene candidates are frequently linked to transcriptional programs that regulate hematopoiesis and define progenitor cell states of immune system development. Perturbation of the myeloid lineage is indicated by pleiotropic associations with defined master regulators and cell alterations. Eosinophil count is inversely associated with cancer risk. A high frequency of pleiotropic associations is also centered on the regulation of small noncoding Y-RNAs. Predicted pleiotropic Y-RNAs show specific regulatory marks and are overabundant in the normal tissue and blood of cancer patients. Analysis of plasma small RNAs in women who developed breast cancer indicates there is an overabundance of Y-RNA preceding neoplasm diagnosis.
This study reveals extensive pleiotropism between blood traits and cancer risk. Pleiotropism is linked to factors and processes involved in hematopoietic development and immune system function, including components of the major histocompatibility complexes, and regulators of telomere length and myeloid lineage. Deregulation of Y-RNAs is also associated with pleiotropism. Overexpression of these elements might indicate increased cancer risk.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>38308367</pmid><doi>10.1186/s13073-024-01294-8</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-3222-4044</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1756-994X |
ispartof | Genome medicine, 2024-02, Vol.16 (1), p.21-22, Article 21 |
issn | 1756-994X 1756-994X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5f8c5c339bf345519940b8098cf83a6d |
source | Publicly Available Content Database; PubMed Central |
subjects | Blood Blood tests Blood trait Body mass index Breast cancer Cancer Carcinogenesis Chromosome 5 Chromosome 6 Development and progression Diagnosis Enhancers Eosinophil Gene loci Genes Genetic aspects Genetic diversity Genetic transcription Genome-wide association studies Genomes Genomic analysis Genomics Genotype & phenotype Health aspects Hematopoiesis Hemopoiesis Immune system Leukocytes Leukocytes (eosinophilic) Medical diagnosis Myeloid Oncology, Experimental Pleiotropy Progenitor cells Prostate Quantitative genetics Quantitative trait loci Risk factors RNA Software Statistical analysis Telomeres |
title | Biological basis of extensive pleiotropy between blood traits and cancer risk |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A43%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biological%20basis%20of%20extensive%20pleiotropy%20between%20blood%20traits%20and%20cancer%20risk&rft.jtitle=Genome%20medicine&rft.au=Pardo-Cea,%20Miguel%20Angel&rft.date=2024-02-02&rft.volume=16&rft.issue=1&rft.spage=21&rft.epage=22&rft.pages=21-22&rft.artnum=21&rft.issn=1756-994X&rft.eissn=1756-994X&rft_id=info:doi/10.1186/s13073-024-01294-8&rft_dat=%3Cgale_doaj_%3EA782198441%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c539t-43be1c09d03b522c37ee50fbef1feea4b340e4c6a75b97f442283cd7b3e1520a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2925638096&rft_id=info:pmid/38308367&rft_galeid=A782198441&rfr_iscdi=true |