Loading…

Old Enzyme, New Role: The β-Glucosidase BglC of Streptomyces scabiei Interferes with the Plant Defense Mechanism by Hydrolyzing Scopolin

The beta-glucosidase BglC fulfills multiple functions in both primary metabolism and induction of pathogenicity of Streptomyces scabiei, the causative agent of common scab in root and tuber crops. Indeed, this enzyme hydrolyzes cellobiose and cellotriose to feed glycolysis with glucose directly and...

Full description

Saved in:
Bibliographic Details
Published in:Biophysica 2022-03, Vol.2 (1), p.1-7
Main Authors: Deflandre, Benoit, Rigali, Sébastien
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The beta-glucosidase BglC fulfills multiple functions in both primary metabolism and induction of pathogenicity of Streptomyces scabiei, the causative agent of common scab in root and tuber crops. Indeed, this enzyme hydrolyzes cellobiose and cellotriose to feed glycolysis with glucose directly and modifies the intracellular concentration of these cello-oligosaccharides, which are the virulence elicitors. The inactivation of bglC led to unexpected phenotypes such as the constitutive overproduction of thaxtomin A, the main virulence determinant of S. scabiei. In this work, we reveal a new target substrate of BglC, the phytoalexin scopolin. Removal of the glucose moiety of scopolin generates scopoletin, a potent inhibitor of thaxtomin A production. The hydrolysis of scopolin by BglC displayed substrate inhibition kinetics, which contrasts with the typical Michaelis–Menten saturation curve previously observed for the degradation of its natural substrate cellobiose. Our work, therefore, reveals that BglC targets both cello-oligosaccharide elicitors emanating from the hosts of S. scabiei, and the scopolin phytoalexin generated by the host defense mechanisms, thereby occupying a key position to fine-tune the production of the main virulence determinant thaxtomin A.
ISSN:2673-4125
2673-4125
DOI:10.3390/biophysica2010001