Loading…
A New Scene Sensing Model Based on Multi-Source Data from Smartphones
Smartphones with integrated sensors play an important role in people's lives, and in advanced multi-sensor fusion navigation systems, the use of individual sensor information is crucial. Because of the different environments, the weights of the sensors will be different, which will also affect...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2024-10, Vol.24 (20), p.6669 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c399t-b5083d5a5d9e2980c33b9f38ec3f63f4284a5a57190b5d5a108d7e79979b66593 |
container_end_page | |
container_issue | 20 |
container_start_page | 6669 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 24 |
creator | Ding, Zhenke Deng, Zhongliang Hu, Enwen Liu, Bingxun Zhang, Zhichao Ma, Mingyang |
description | Smartphones with integrated sensors play an important role in people's lives, and in advanced multi-sensor fusion navigation systems, the use of individual sensor information is crucial. Because of the different environments, the weights of the sensors will be different, which will also affect the method and results of multi-source fusion positioning. Based on the multi-source data from smartphone sensors, this study explores five types of information-Global Navigation Satellite System (GNSS), Inertial Measurement Units (IMUs), cellular networks, optical sensors, and Wi-Fi sensors-characterizing the temporal, spatial, and mathematical statistical features of the data, and it constructs a multi-scale, multi-window, and context-connected scene sensing model to accurately detect the environmental scene in indoor, semi-indoor, outdoor, and semi-outdoor spaces, thus providing a good basis for multi-sensor positioning in a multi-sensor navigation system. Detecting environmental scenes provides an environmental positioning basis for multi-sensor fusion localization. This model is divided into four main parts: multi-sensor-based data mining, a multi-scale convolutional neural network (CNN), a bidirectional long short-term memory (BiLSTM) network combined with contextual information, and a meta-heuristic optimization algorithm. |
doi_str_mv | 10.3390/s24206669 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5fb4a6deaedd420c8cfd1917ba1d1066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A814418254</galeid><doaj_id>oai_doaj_org_article_5fb4a6deaedd420c8cfd1917ba1d1066</doaj_id><sourcerecordid>A814418254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-b5083d5a5d9e2980c33b9f38ec3f63f4284a5a57190b5d5a108d7e79979b66593</originalsourceid><addsrcrecordid>eNpdkk1v1DAQhiMEoqVw4A8gS1zgkOLPxD6hpRSo1MJh4Ww59njrVRJv4wTEv2fKllWLfLA18_idmVdTVS8ZPRXC0HeFS06bpjGPqmMmuaw15_TxvfdR9ayULaVcCKGfVkfCyIYyaY6r8xX5Cr_I2sMIZA1jSeOGXOUAPfngCgSSR3K19HOq13mZPJCPbnYkTnkg68FN8-46j1CeV0-i6wu8uLtPqh-fzr-ffakvv32-OFtd1l4YM9edoloE5VQwwI2mXojORKHBi9iIKLmWDrMtM7RTyDGqQwutMa3pmkYZcVJd7HVDdlu7mxK28Ntml-zfQJ42FntKvgerYiddE8BBCOiO1z4GZljbORYYmoVa7_dau6UbIKAB8-T6B6IPM2O6tpv80zKmGDVMoMKbO4Up3yxQZjuk4qHv3Qh5KVYwjpWkbBWir_9Dt2jniF7dUrRVXDccqdM9tXE4QRpjxsIeT4AheTQ6JoyvNJOSaa4kfni7_-CnXMoE8dA-o_Z2NexhNZB9dX_eA_lvF8QfJ72w1g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120752862</pqid></control><display><type>article</type><title>A New Scene Sensing Model Based on Multi-Source Data from Smartphones</title><source>PubMed (Medline)</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Ding, Zhenke ; Deng, Zhongliang ; Hu, Enwen ; Liu, Bingxun ; Zhang, Zhichao ; Ma, Mingyang</creator><creatorcontrib>Ding, Zhenke ; Deng, Zhongliang ; Hu, Enwen ; Liu, Bingxun ; Zhang, Zhichao ; Ma, Mingyang</creatorcontrib><description>Smartphones with integrated sensors play an important role in people's lives, and in advanced multi-sensor fusion navigation systems, the use of individual sensor information is crucial. Because of the different environments, the weights of the sensors will be different, which will also affect the method and results of multi-source fusion positioning. Based on the multi-source data from smartphone sensors, this study explores five types of information-Global Navigation Satellite System (GNSS), Inertial Measurement Units (IMUs), cellular networks, optical sensors, and Wi-Fi sensors-characterizing the temporal, spatial, and mathematical statistical features of the data, and it constructs a multi-scale, multi-window, and context-connected scene sensing model to accurately detect the environmental scene in indoor, semi-indoor, outdoor, and semi-outdoor spaces, thus providing a good basis for multi-sensor positioning in a multi-sensor navigation system. Detecting environmental scenes provides an environmental positioning basis for multi-sensor fusion localization. This model is divided into four main parts: multi-sensor-based data mining, a multi-scale convolutional neural network (CNN), a bidirectional long short-term memory (BiLSTM) network combined with contextual information, and a meta-heuristic optimization algorithm.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s24206669</identifier><identifier>PMID: 39460149</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Altitude ; Artificial satellites ; Classification ; CNN ; Data mining ; Datasets ; Electronics in navigation ; GNSS ; Machine learning ; Mathematical optimization ; multi-source sensor ; Neural networks ; Satellites ; scene classification ; Sensors ; Smart phones ; Smartphones ; Telecommunication systems ; Wi-Fi</subject><ispartof>Sensors (Basel, Switzerland), 2024-10, Vol.24 (20), p.6669</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c399t-b5083d5a5d9e2980c33b9f38ec3f63f4284a5a57190b5d5a108d7e79979b66593</cites><orcidid>0009-0009-0540-5561</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3120752862/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3120752862?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39460149$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Zhenke</creatorcontrib><creatorcontrib>Deng, Zhongliang</creatorcontrib><creatorcontrib>Hu, Enwen</creatorcontrib><creatorcontrib>Liu, Bingxun</creatorcontrib><creatorcontrib>Zhang, Zhichao</creatorcontrib><creatorcontrib>Ma, Mingyang</creatorcontrib><title>A New Scene Sensing Model Based on Multi-Source Data from Smartphones</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Smartphones with integrated sensors play an important role in people's lives, and in advanced multi-sensor fusion navigation systems, the use of individual sensor information is crucial. Because of the different environments, the weights of the sensors will be different, which will also affect the method and results of multi-source fusion positioning. Based on the multi-source data from smartphone sensors, this study explores five types of information-Global Navigation Satellite System (GNSS), Inertial Measurement Units (IMUs), cellular networks, optical sensors, and Wi-Fi sensors-characterizing the temporal, spatial, and mathematical statistical features of the data, and it constructs a multi-scale, multi-window, and context-connected scene sensing model to accurately detect the environmental scene in indoor, semi-indoor, outdoor, and semi-outdoor spaces, thus providing a good basis for multi-sensor positioning in a multi-sensor navigation system. Detecting environmental scenes provides an environmental positioning basis for multi-sensor fusion localization. This model is divided into four main parts: multi-sensor-based data mining, a multi-scale convolutional neural network (CNN), a bidirectional long short-term memory (BiLSTM) network combined with contextual information, and a meta-heuristic optimization algorithm.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Altitude</subject><subject>Artificial satellites</subject><subject>Classification</subject><subject>CNN</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Electronics in navigation</subject><subject>GNSS</subject><subject>Machine learning</subject><subject>Mathematical optimization</subject><subject>multi-source sensor</subject><subject>Neural networks</subject><subject>Satellites</subject><subject>scene classification</subject><subject>Sensors</subject><subject>Smart phones</subject><subject>Smartphones</subject><subject>Telecommunication systems</subject><subject>Wi-Fi</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1v1DAQhiMEoqVw4A8gS1zgkOLPxD6hpRSo1MJh4Ww59njrVRJv4wTEv2fKllWLfLA18_idmVdTVS8ZPRXC0HeFS06bpjGPqmMmuaw15_TxvfdR9ayULaVcCKGfVkfCyIYyaY6r8xX5Cr_I2sMIZA1jSeOGXOUAPfngCgSSR3K19HOq13mZPJCPbnYkTnkg68FN8-46j1CeV0-i6wu8uLtPqh-fzr-ffakvv32-OFtd1l4YM9edoloE5VQwwI2mXojORKHBi9iIKLmWDrMtM7RTyDGqQwutMa3pmkYZcVJd7HVDdlu7mxK28Ntml-zfQJ42FntKvgerYiddE8BBCOiO1z4GZljbORYYmoVa7_dau6UbIKAB8-T6B6IPM2O6tpv80zKmGDVMoMKbO4Up3yxQZjuk4qHv3Qh5KVYwjpWkbBWir_9Dt2jniF7dUrRVXDccqdM9tXE4QRpjxsIeT4AheTQ6JoyvNJOSaa4kfni7_-CnXMoE8dA-o_Z2NexhNZB9dX_eA_lvF8QfJ72w1g</recordid><startdate>20241016</startdate><enddate>20241016</enddate><creator>Ding, Zhenke</creator><creator>Deng, Zhongliang</creator><creator>Hu, Enwen</creator><creator>Liu, Bingxun</creator><creator>Zhang, Zhichao</creator><creator>Ma, Mingyang</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0009-0540-5561</orcidid></search><sort><creationdate>20241016</creationdate><title>A New Scene Sensing Model Based on Multi-Source Data from Smartphones</title><author>Ding, Zhenke ; Deng, Zhongliang ; Hu, Enwen ; Liu, Bingxun ; Zhang, Zhichao ; Ma, Mingyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-b5083d5a5d9e2980c33b9f38ec3f63f4284a5a57190b5d5a108d7e79979b66593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Altitude</topic><topic>Artificial satellites</topic><topic>Classification</topic><topic>CNN</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Electronics in navigation</topic><topic>GNSS</topic><topic>Machine learning</topic><topic>Mathematical optimization</topic><topic>multi-source sensor</topic><topic>Neural networks</topic><topic>Satellites</topic><topic>scene classification</topic><topic>Sensors</topic><topic>Smart phones</topic><topic>Smartphones</topic><topic>Telecommunication systems</topic><topic>Wi-Fi</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Zhenke</creatorcontrib><creatorcontrib>Deng, Zhongliang</creatorcontrib><creatorcontrib>Hu, Enwen</creatorcontrib><creatorcontrib>Liu, Bingxun</creatorcontrib><creatorcontrib>Zhang, Zhichao</creatorcontrib><creatorcontrib>Ma, Mingyang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Zhenke</au><au>Deng, Zhongliang</au><au>Hu, Enwen</au><au>Liu, Bingxun</au><au>Zhang, Zhichao</au><au>Ma, Mingyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Scene Sensing Model Based on Multi-Source Data from Smartphones</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2024-10-16</date><risdate>2024</risdate><volume>24</volume><issue>20</issue><spage>6669</spage><pages>6669-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Smartphones with integrated sensors play an important role in people's lives, and in advanced multi-sensor fusion navigation systems, the use of individual sensor information is crucial. Because of the different environments, the weights of the sensors will be different, which will also affect the method and results of multi-source fusion positioning. Based on the multi-source data from smartphone sensors, this study explores five types of information-Global Navigation Satellite System (GNSS), Inertial Measurement Units (IMUs), cellular networks, optical sensors, and Wi-Fi sensors-characterizing the temporal, spatial, and mathematical statistical features of the data, and it constructs a multi-scale, multi-window, and context-connected scene sensing model to accurately detect the environmental scene in indoor, semi-indoor, outdoor, and semi-outdoor spaces, thus providing a good basis for multi-sensor positioning in a multi-sensor navigation system. Detecting environmental scenes provides an environmental positioning basis for multi-sensor fusion localization. This model is divided into four main parts: multi-sensor-based data mining, a multi-scale convolutional neural network (CNN), a bidirectional long short-term memory (BiLSTM) network combined with contextual information, and a meta-heuristic optimization algorithm.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39460149</pmid><doi>10.3390/s24206669</doi><orcidid>https://orcid.org/0009-0009-0540-5561</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2024-10, Vol.24 (20), p.6669 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5fb4a6deaedd420c8cfd1917ba1d1066 |
source | PubMed (Medline); Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Accuracy Algorithms Altitude Artificial satellites Classification CNN Data mining Datasets Electronics in navigation GNSS Machine learning Mathematical optimization multi-source sensor Neural networks Satellites scene classification Sensors Smart phones Smartphones Telecommunication systems Wi-Fi |
title | A New Scene Sensing Model Based on Multi-Source Data from Smartphones |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A06%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Scene%20Sensing%20Model%20Based%20on%20Multi-Source%20Data%20from%20Smartphones&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Ding,%20Zhenke&rft.date=2024-10-16&rft.volume=24&rft.issue=20&rft.spage=6669&rft.pages=6669-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s24206669&rft_dat=%3Cgale_doaj_%3EA814418254%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-b5083d5a5d9e2980c33b9f38ec3f63f4284a5a57190b5d5a108d7e79979b66593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3120752862&rft_id=info:pmid/39460149&rft_galeid=A814418254&rfr_iscdi=true |