Loading…

The Influence of Refined Urban Morphological Parameters on Dynamical and Thermal Fields in a Single-Layer Urban Canopy Model

In this study, localised and non-uniform urban morphology (UM) and urban fraction (UF) parameters are implemented in a single-layer urban canopy scheme in the Weather Research and Forecasting (WRF) mesoscale meteorological model. The purpose of this research is to evaluate the effect of the refined...

Full description

Saved in:
Bibliographic Details
Published in:Atmosphere 2023-04, Vol.14 (4), p.719
Main Authors: Shen, Chong, Liu, Yiming, Dai, Wei, Chen, Xiaoyang, Fan, Qi, Wang, Xuemei, Chan, Pakwai, Wang, Chunlin, Pan, Weijuan, Li, Jieyi, Li, Xiaohui, Wu, Jie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c365t-7b81e88100c4f1dbc956496db8cb15ca7208e401e5fd640c1a0ae3cbcef40fce3
container_end_page
container_issue 4
container_start_page 719
container_title Atmosphere
container_volume 14
creator Shen, Chong
Liu, Yiming
Dai, Wei
Chen, Xiaoyang
Fan, Qi
Wang, Xuemei
Chan, Pakwai
Wang, Chunlin
Pan, Weijuan
Li, Jieyi
Li, Xiaohui
Wu, Jie
description In this study, localised and non-uniform urban morphology (UM) and urban fraction (UF) parameters are implemented in a single-layer urban canopy scheme in the Weather Research and Forecasting (WRF) mesoscale meteorological model. The purpose of this research is to evaluate the effect of the refined parameterisation scheme on the simulation of dynamic and thermal fields in the urban canopy of the Guangzhou metropolitan area. The results showed that, compared with the default urban canopy parameters of the WRF model, using the localised UM parameters resulted in the most significant improvement in the 10 m wind speed simulation. In urban districts, the mean bias between the observed and simulated 10 m wind speed was reduced significantly by 59% from 2.63 m/s to 1.09 m/s during the daytime. For the thermal environment simulation during the daytime, higher UF and UM values resulted in lower surface albedos and generated narrower street canyons compared with the default modelling setting, which caused more heat to be trapped in the urban canopy and ultimately led to an increase in the surface skin temperature (TSK) and a largely increased ground heat flux (GRD). As a result, at night, more heat was transferred from the ground to the surface, producing a higher TSK. The effect of the localised UF on the sensible heat flux (HFX) was closely related to the near-surface temperature gradient. The UM caused the HFX to increase during the daytime, which was related to the near-surface heat exchange coefficient in the lower model layers. As the high-resolution UM significantly altered the urban geometry, the dynamic environment simulation resulted in a large increase in friction velocity and a decrease in wind speed.
doi_str_mv 10.3390/atmos14040719
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5fbe3d9ff23941b58d93af26576e70fa</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A747308143</galeid><doaj_id>oai_doaj_org_article_5fbe3d9ff23941b58d93af26576e70fa</doaj_id><sourcerecordid>A747308143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-7b81e88100c4f1dbc956496db8cb15ca7208e401e5fd640c1a0ae3cbcef40fce3</originalsourceid><addsrcrecordid>eNpVkU1rHDEMhk1poGGTY--Gnie1x54ZzzFs87GwIaVJzkZjyxsvM_bWnj0s5MfHyYbQSgeJF-lB6CXkO2cXQvTsJ8xTzFwyyTrefyGnNetEJaUQX__pv5HznLeshOxFLeQpeXl8RroKbtxjMEijo3_Q-YCWPqUBAr2Lafccx7jxBkb6GxJMOGPKNAb66xBgetchWFpAaSr9tcfRZuoDBfrgw2bEag0HTB_AJYS4OxSuxfGMnDgYM55_1AV5ur56XN5W6_ub1fJyXRnRNnPVDYqjUpwxIx23g-mbVvatHZQZeGOgq5lCyTg2zraSGQ4MUJjBoJPMGRQLsjpybYSt3iU_QTroCF6_CzFtNKTZmxF14wYUtneuFr3kQ6NsL8DVbdO12DEHhfXjyNql-HePedbbuE-hnK9rxVqpBK_rMnVxnNpAgfrg4pzAlLRYPhZD-XHRLzvZCaZ4cWZBquOCSTHnhO7zTM70m8H6P4PFK0Y_mW0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806483122</pqid></control><display><type>article</type><title>The Influence of Refined Urban Morphological Parameters on Dynamical and Thermal Fields in a Single-Layer Urban Canopy Model</title><source>Publicly Available Content (ProQuest)</source><creator>Shen, Chong ; Liu, Yiming ; Dai, Wei ; Chen, Xiaoyang ; Fan, Qi ; Wang, Xuemei ; Chan, Pakwai ; Wang, Chunlin ; Pan, Weijuan ; Li, Jieyi ; Li, Xiaohui ; Wu, Jie</creator><creatorcontrib>Shen, Chong ; Liu, Yiming ; Dai, Wei ; Chen, Xiaoyang ; Fan, Qi ; Wang, Xuemei ; Chan, Pakwai ; Wang, Chunlin ; Pan, Weijuan ; Li, Jieyi ; Li, Xiaohui ; Wu, Jie</creatorcontrib><description>In this study, localised and non-uniform urban morphology (UM) and urban fraction (UF) parameters are implemented in a single-layer urban canopy scheme in the Weather Research and Forecasting (WRF) mesoscale meteorological model. The purpose of this research is to evaluate the effect of the refined parameterisation scheme on the simulation of dynamic and thermal fields in the urban canopy of the Guangzhou metropolitan area. The results showed that, compared with the default urban canopy parameters of the WRF model, using the localised UM parameters resulted in the most significant improvement in the 10 m wind speed simulation. In urban districts, the mean bias between the observed and simulated 10 m wind speed was reduced significantly by 59% from 2.63 m/s to 1.09 m/s during the daytime. For the thermal environment simulation during the daytime, higher UF and UM values resulted in lower surface albedos and generated narrower street canyons compared with the default modelling setting, which caused more heat to be trapped in the urban canopy and ultimately led to an increase in the surface skin temperature (TSK) and a largely increased ground heat flux (GRD). As a result, at night, more heat was transferred from the ground to the surface, producing a higher TSK. The effect of the localised UF on the sensible heat flux (HFX) was closely related to the near-surface temperature gradient. The UM caused the HFX to increase during the daytime, which was related to the near-surface heat exchange coefficient in the lower model layers. As the high-resolution UM significantly altered the urban geometry, the dynamic environment simulation resulted in a large increase in friction velocity and a decrease in wind speed.</description><identifier>ISSN: 2073-4433</identifier><identifier>EISSN: 2073-4433</identifier><identifier>DOI: 10.3390/atmos14040719</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Atmospheric boundary layer ; Canopies ; Canopies, Architectural ; Canopy ; Datasets ; Daytime ; Enthalpy ; Environment simulation ; Environmental aspects ; Exchange coefficients ; Fields ; Geometry ; Guangzhou ; Heat ; Heat exchange ; Heat flux ; Heat transfer ; Mathematical models ; Metropolitan areas ; Modelling ; Morphology ; Parameterization ; Parameters ; Plant cover ; Radiation ; Sensible heat ; Sensible heat flux ; Sensible heat transfer ; Simulation ; Skin temperature ; Street canyons ; Surface temperature ; Temperature gradients ; Thermal environments ; Thermal simulation ; thermodynamic environment ; Urban areas ; Urban climatology ; urban fraction ; Urban heat islands ; urban morphology parameters ; Urbanization ; Weather forecasting ; Wind ; Wind speed ; WRF model</subject><ispartof>Atmosphere, 2023-04, Vol.14 (4), p.719</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c365t-7b81e88100c4f1dbc956496db8cb15ca7208e401e5fd640c1a0ae3cbcef40fce3</cites><orcidid>0000-0002-9698-3691 ; 0000-0003-2289-0609</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2806483122/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2806483122?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><creatorcontrib>Shen, Chong</creatorcontrib><creatorcontrib>Liu, Yiming</creatorcontrib><creatorcontrib>Dai, Wei</creatorcontrib><creatorcontrib>Chen, Xiaoyang</creatorcontrib><creatorcontrib>Fan, Qi</creatorcontrib><creatorcontrib>Wang, Xuemei</creatorcontrib><creatorcontrib>Chan, Pakwai</creatorcontrib><creatorcontrib>Wang, Chunlin</creatorcontrib><creatorcontrib>Pan, Weijuan</creatorcontrib><creatorcontrib>Li, Jieyi</creatorcontrib><creatorcontrib>Li, Xiaohui</creatorcontrib><creatorcontrib>Wu, Jie</creatorcontrib><title>The Influence of Refined Urban Morphological Parameters on Dynamical and Thermal Fields in a Single-Layer Urban Canopy Model</title><title>Atmosphere</title><description>In this study, localised and non-uniform urban morphology (UM) and urban fraction (UF) parameters are implemented in a single-layer urban canopy scheme in the Weather Research and Forecasting (WRF) mesoscale meteorological model. The purpose of this research is to evaluate the effect of the refined parameterisation scheme on the simulation of dynamic and thermal fields in the urban canopy of the Guangzhou metropolitan area. The results showed that, compared with the default urban canopy parameters of the WRF model, using the localised UM parameters resulted in the most significant improvement in the 10 m wind speed simulation. In urban districts, the mean bias between the observed and simulated 10 m wind speed was reduced significantly by 59% from 2.63 m/s to 1.09 m/s during the daytime. For the thermal environment simulation during the daytime, higher UF and UM values resulted in lower surface albedos and generated narrower street canyons compared with the default modelling setting, which caused more heat to be trapped in the urban canopy and ultimately led to an increase in the surface skin temperature (TSK) and a largely increased ground heat flux (GRD). As a result, at night, more heat was transferred from the ground to the surface, producing a higher TSK. The effect of the localised UF on the sensible heat flux (HFX) was closely related to the near-surface temperature gradient. The UM caused the HFX to increase during the daytime, which was related to the near-surface heat exchange coefficient in the lower model layers. As the high-resolution UM significantly altered the urban geometry, the dynamic environment simulation resulted in a large increase in friction velocity and a decrease in wind speed.</description><subject>Atmospheric boundary layer</subject><subject>Canopies</subject><subject>Canopies, Architectural</subject><subject>Canopy</subject><subject>Datasets</subject><subject>Daytime</subject><subject>Enthalpy</subject><subject>Environment simulation</subject><subject>Environmental aspects</subject><subject>Exchange coefficients</subject><subject>Fields</subject><subject>Geometry</subject><subject>Guangzhou</subject><subject>Heat</subject><subject>Heat exchange</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Mathematical models</subject><subject>Metropolitan areas</subject><subject>Modelling</subject><subject>Morphology</subject><subject>Parameterization</subject><subject>Parameters</subject><subject>Plant cover</subject><subject>Radiation</subject><subject>Sensible heat</subject><subject>Sensible heat flux</subject><subject>Sensible heat transfer</subject><subject>Simulation</subject><subject>Skin temperature</subject><subject>Street canyons</subject><subject>Surface temperature</subject><subject>Temperature gradients</subject><subject>Thermal environments</subject><subject>Thermal simulation</subject><subject>thermodynamic environment</subject><subject>Urban areas</subject><subject>Urban climatology</subject><subject>urban fraction</subject><subject>Urban heat islands</subject><subject>urban morphology parameters</subject><subject>Urbanization</subject><subject>Weather forecasting</subject><subject>Wind</subject><subject>Wind speed</subject><subject>WRF model</subject><issn>2073-4433</issn><issn>2073-4433</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkU1rHDEMhk1poGGTY--Gnie1x54ZzzFs87GwIaVJzkZjyxsvM_bWnj0s5MfHyYbQSgeJF-lB6CXkO2cXQvTsJ8xTzFwyyTrefyGnNetEJaUQX__pv5HznLeshOxFLeQpeXl8RroKbtxjMEijo3_Q-YCWPqUBAr2Lafccx7jxBkb6GxJMOGPKNAb66xBgetchWFpAaSr9tcfRZuoDBfrgw2bEag0HTB_AJYS4OxSuxfGMnDgYM55_1AV5ur56XN5W6_ub1fJyXRnRNnPVDYqjUpwxIx23g-mbVvatHZQZeGOgq5lCyTg2zraSGQ4MUJjBoJPMGRQLsjpybYSt3iU_QTroCF6_CzFtNKTZmxF14wYUtneuFr3kQ6NsL8DVbdO12DEHhfXjyNql-HePedbbuE-hnK9rxVqpBK_rMnVxnNpAgfrg4pzAlLRYPhZD-XHRLzvZCaZ4cWZBquOCSTHnhO7zTM70m8H6P4PFK0Y_mW0</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Shen, Chong</creator><creator>Liu, Yiming</creator><creator>Dai, Wei</creator><creator>Chen, Xiaoyang</creator><creator>Fan, Qi</creator><creator>Wang, Xuemei</creator><creator>Chan, Pakwai</creator><creator>Wang, Chunlin</creator><creator>Pan, Weijuan</creator><creator>Li, Jieyi</creator><creator>Li, Xiaohui</creator><creator>Wu, Jie</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9698-3691</orcidid><orcidid>https://orcid.org/0000-0003-2289-0609</orcidid></search><sort><creationdate>20230401</creationdate><title>The Influence of Refined Urban Morphological Parameters on Dynamical and Thermal Fields in a Single-Layer Urban Canopy Model</title><author>Shen, Chong ; Liu, Yiming ; Dai, Wei ; Chen, Xiaoyang ; Fan, Qi ; Wang, Xuemei ; Chan, Pakwai ; Wang, Chunlin ; Pan, Weijuan ; Li, Jieyi ; Li, Xiaohui ; Wu, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-7b81e88100c4f1dbc956496db8cb15ca7208e401e5fd640c1a0ae3cbcef40fce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Atmospheric boundary layer</topic><topic>Canopies</topic><topic>Canopies, Architectural</topic><topic>Canopy</topic><topic>Datasets</topic><topic>Daytime</topic><topic>Enthalpy</topic><topic>Environment simulation</topic><topic>Environmental aspects</topic><topic>Exchange coefficients</topic><topic>Fields</topic><topic>Geometry</topic><topic>Guangzhou</topic><topic>Heat</topic><topic>Heat exchange</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Mathematical models</topic><topic>Metropolitan areas</topic><topic>Modelling</topic><topic>Morphology</topic><topic>Parameterization</topic><topic>Parameters</topic><topic>Plant cover</topic><topic>Radiation</topic><topic>Sensible heat</topic><topic>Sensible heat flux</topic><topic>Sensible heat transfer</topic><topic>Simulation</topic><topic>Skin temperature</topic><topic>Street canyons</topic><topic>Surface temperature</topic><topic>Temperature gradients</topic><topic>Thermal environments</topic><topic>Thermal simulation</topic><topic>thermodynamic environment</topic><topic>Urban areas</topic><topic>Urban climatology</topic><topic>urban fraction</topic><topic>Urban heat islands</topic><topic>urban morphology parameters</topic><topic>Urbanization</topic><topic>Weather forecasting</topic><topic>Wind</topic><topic>Wind speed</topic><topic>WRF model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Chong</creatorcontrib><creatorcontrib>Liu, Yiming</creatorcontrib><creatorcontrib>Dai, Wei</creatorcontrib><creatorcontrib>Chen, Xiaoyang</creatorcontrib><creatorcontrib>Fan, Qi</creatorcontrib><creatorcontrib>Wang, Xuemei</creatorcontrib><creatorcontrib>Chan, Pakwai</creatorcontrib><creatorcontrib>Wang, Chunlin</creatorcontrib><creatorcontrib>Pan, Weijuan</creatorcontrib><creatorcontrib>Li, Jieyi</creatorcontrib><creatorcontrib>Li, Xiaohui</creatorcontrib><creatorcontrib>Wu, Jie</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Atmosphere</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Chong</au><au>Liu, Yiming</au><au>Dai, Wei</au><au>Chen, Xiaoyang</au><au>Fan, Qi</au><au>Wang, Xuemei</au><au>Chan, Pakwai</au><au>Wang, Chunlin</au><au>Pan, Weijuan</au><au>Li, Jieyi</au><au>Li, Xiaohui</au><au>Wu, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Influence of Refined Urban Morphological Parameters on Dynamical and Thermal Fields in a Single-Layer Urban Canopy Model</atitle><jtitle>Atmosphere</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>14</volume><issue>4</issue><spage>719</spage><pages>719-</pages><issn>2073-4433</issn><eissn>2073-4433</eissn><abstract>In this study, localised and non-uniform urban morphology (UM) and urban fraction (UF) parameters are implemented in a single-layer urban canopy scheme in the Weather Research and Forecasting (WRF) mesoscale meteorological model. The purpose of this research is to evaluate the effect of the refined parameterisation scheme on the simulation of dynamic and thermal fields in the urban canopy of the Guangzhou metropolitan area. The results showed that, compared with the default urban canopy parameters of the WRF model, using the localised UM parameters resulted in the most significant improvement in the 10 m wind speed simulation. In urban districts, the mean bias between the observed and simulated 10 m wind speed was reduced significantly by 59% from 2.63 m/s to 1.09 m/s during the daytime. For the thermal environment simulation during the daytime, higher UF and UM values resulted in lower surface albedos and generated narrower street canyons compared with the default modelling setting, which caused more heat to be trapped in the urban canopy and ultimately led to an increase in the surface skin temperature (TSK) and a largely increased ground heat flux (GRD). As a result, at night, more heat was transferred from the ground to the surface, producing a higher TSK. The effect of the localised UF on the sensible heat flux (HFX) was closely related to the near-surface temperature gradient. The UM caused the HFX to increase during the daytime, which was related to the near-surface heat exchange coefficient in the lower model layers. As the high-resolution UM significantly altered the urban geometry, the dynamic environment simulation resulted in a large increase in friction velocity and a decrease in wind speed.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/atmos14040719</doi><orcidid>https://orcid.org/0000-0002-9698-3691</orcidid><orcidid>https://orcid.org/0000-0003-2289-0609</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4433
ispartof Atmosphere, 2023-04, Vol.14 (4), p.719
issn 2073-4433
2073-4433
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_5fbe3d9ff23941b58d93af26576e70fa
source Publicly Available Content (ProQuest)
subjects Atmospheric boundary layer
Canopies
Canopies, Architectural
Canopy
Datasets
Daytime
Enthalpy
Environment simulation
Environmental aspects
Exchange coefficients
Fields
Geometry
Guangzhou
Heat
Heat exchange
Heat flux
Heat transfer
Mathematical models
Metropolitan areas
Modelling
Morphology
Parameterization
Parameters
Plant cover
Radiation
Sensible heat
Sensible heat flux
Sensible heat transfer
Simulation
Skin temperature
Street canyons
Surface temperature
Temperature gradients
Thermal environments
Thermal simulation
thermodynamic environment
Urban areas
Urban climatology
urban fraction
Urban heat islands
urban morphology parameters
Urbanization
Weather forecasting
Wind
Wind speed
WRF model
title The Influence of Refined Urban Morphological Parameters on Dynamical and Thermal Fields in a Single-Layer Urban Canopy Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A54%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Influence%20of%20Refined%20Urban%20Morphological%20Parameters%20on%20Dynamical%20and%20Thermal%20Fields%20in%20a%20Single-Layer%20Urban%20Canopy%20Model&rft.jtitle=Atmosphere&rft.au=Shen,%20Chong&rft.date=2023-04-01&rft.volume=14&rft.issue=4&rft.spage=719&rft.pages=719-&rft.issn=2073-4433&rft.eissn=2073-4433&rft_id=info:doi/10.3390/atmos14040719&rft_dat=%3Cgale_doaj_%3EA747308143%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c365t-7b81e88100c4f1dbc956496db8cb15ca7208e401e5fd640c1a0ae3cbcef40fce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2806483122&rft_id=info:pmid/&rft_galeid=A747308143&rfr_iscdi=true