Loading…
The Influence of Refined Urban Morphological Parameters on Dynamical and Thermal Fields in a Single-Layer Urban Canopy Model
In this study, localised and non-uniform urban morphology (UM) and urban fraction (UF) parameters are implemented in a single-layer urban canopy scheme in the Weather Research and Forecasting (WRF) mesoscale meteorological model. The purpose of this research is to evaluate the effect of the refined...
Saved in:
Published in: | Atmosphere 2023-04, Vol.14 (4), p.719 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c365t-7b81e88100c4f1dbc956496db8cb15ca7208e401e5fd640c1a0ae3cbcef40fce3 |
container_end_page | |
container_issue | 4 |
container_start_page | 719 |
container_title | Atmosphere |
container_volume | 14 |
creator | Shen, Chong Liu, Yiming Dai, Wei Chen, Xiaoyang Fan, Qi Wang, Xuemei Chan, Pakwai Wang, Chunlin Pan, Weijuan Li, Jieyi Li, Xiaohui Wu, Jie |
description | In this study, localised and non-uniform urban morphology (UM) and urban fraction (UF) parameters are implemented in a single-layer urban canopy scheme in the Weather Research and Forecasting (WRF) mesoscale meteorological model. The purpose of this research is to evaluate the effect of the refined parameterisation scheme on the simulation of dynamic and thermal fields in the urban canopy of the Guangzhou metropolitan area. The results showed that, compared with the default urban canopy parameters of the WRF model, using the localised UM parameters resulted in the most significant improvement in the 10 m wind speed simulation. In urban districts, the mean bias between the observed and simulated 10 m wind speed was reduced significantly by 59% from 2.63 m/s to 1.09 m/s during the daytime. For the thermal environment simulation during the daytime, higher UF and UM values resulted in lower surface albedos and generated narrower street canyons compared with the default modelling setting, which caused more heat to be trapped in the urban canopy and ultimately led to an increase in the surface skin temperature (TSK) and a largely increased ground heat flux (GRD). As a result, at night, more heat was transferred from the ground to the surface, producing a higher TSK. The effect of the localised UF on the sensible heat flux (HFX) was closely related to the near-surface temperature gradient. The UM caused the HFX to increase during the daytime, which was related to the near-surface heat exchange coefficient in the lower model layers. As the high-resolution UM significantly altered the urban geometry, the dynamic environment simulation resulted in a large increase in friction velocity and a decrease in wind speed. |
doi_str_mv | 10.3390/atmos14040719 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5fbe3d9ff23941b58d93af26576e70fa</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A747308143</galeid><doaj_id>oai_doaj_org_article_5fbe3d9ff23941b58d93af26576e70fa</doaj_id><sourcerecordid>A747308143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-7b81e88100c4f1dbc956496db8cb15ca7208e401e5fd640c1a0ae3cbcef40fce3</originalsourceid><addsrcrecordid>eNpVkU1rHDEMhk1poGGTY--Gnie1x54ZzzFs87GwIaVJzkZjyxsvM_bWnj0s5MfHyYbQSgeJF-lB6CXkO2cXQvTsJ8xTzFwyyTrefyGnNetEJaUQX__pv5HznLeshOxFLeQpeXl8RroKbtxjMEijo3_Q-YCWPqUBAr2Lafccx7jxBkb6GxJMOGPKNAb66xBgetchWFpAaSr9tcfRZuoDBfrgw2bEag0HTB_AJYS4OxSuxfGMnDgYM55_1AV5ur56XN5W6_ub1fJyXRnRNnPVDYqjUpwxIx23g-mbVvatHZQZeGOgq5lCyTg2zraSGQ4MUJjBoJPMGRQLsjpybYSt3iU_QTroCF6_CzFtNKTZmxF14wYUtneuFr3kQ6NsL8DVbdO12DEHhfXjyNql-HePedbbuE-hnK9rxVqpBK_rMnVxnNpAgfrg4pzAlLRYPhZD-XHRLzvZCaZ4cWZBquOCSTHnhO7zTM70m8H6P4PFK0Y_mW0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806483122</pqid></control><display><type>article</type><title>The Influence of Refined Urban Morphological Parameters on Dynamical and Thermal Fields in a Single-Layer Urban Canopy Model</title><source>Publicly Available Content (ProQuest)</source><creator>Shen, Chong ; Liu, Yiming ; Dai, Wei ; Chen, Xiaoyang ; Fan, Qi ; Wang, Xuemei ; Chan, Pakwai ; Wang, Chunlin ; Pan, Weijuan ; Li, Jieyi ; Li, Xiaohui ; Wu, Jie</creator><creatorcontrib>Shen, Chong ; Liu, Yiming ; Dai, Wei ; Chen, Xiaoyang ; Fan, Qi ; Wang, Xuemei ; Chan, Pakwai ; Wang, Chunlin ; Pan, Weijuan ; Li, Jieyi ; Li, Xiaohui ; Wu, Jie</creatorcontrib><description>In this study, localised and non-uniform urban morphology (UM) and urban fraction (UF) parameters are implemented in a single-layer urban canopy scheme in the Weather Research and Forecasting (WRF) mesoscale meteorological model. The purpose of this research is to evaluate the effect of the refined parameterisation scheme on the simulation of dynamic and thermal fields in the urban canopy of the Guangzhou metropolitan area. The results showed that, compared with the default urban canopy parameters of the WRF model, using the localised UM parameters resulted in the most significant improvement in the 10 m wind speed simulation. In urban districts, the mean bias between the observed and simulated 10 m wind speed was reduced significantly by 59% from 2.63 m/s to 1.09 m/s during the daytime. For the thermal environment simulation during the daytime, higher UF and UM values resulted in lower surface albedos and generated narrower street canyons compared with the default modelling setting, which caused more heat to be trapped in the urban canopy and ultimately led to an increase in the surface skin temperature (TSK) and a largely increased ground heat flux (GRD). As a result, at night, more heat was transferred from the ground to the surface, producing a higher TSK. The effect of the localised UF on the sensible heat flux (HFX) was closely related to the near-surface temperature gradient. The UM caused the HFX to increase during the daytime, which was related to the near-surface heat exchange coefficient in the lower model layers. As the high-resolution UM significantly altered the urban geometry, the dynamic environment simulation resulted in a large increase in friction velocity and a decrease in wind speed.</description><identifier>ISSN: 2073-4433</identifier><identifier>EISSN: 2073-4433</identifier><identifier>DOI: 10.3390/atmos14040719</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Atmospheric boundary layer ; Canopies ; Canopies, Architectural ; Canopy ; Datasets ; Daytime ; Enthalpy ; Environment simulation ; Environmental aspects ; Exchange coefficients ; Fields ; Geometry ; Guangzhou ; Heat ; Heat exchange ; Heat flux ; Heat transfer ; Mathematical models ; Metropolitan areas ; Modelling ; Morphology ; Parameterization ; Parameters ; Plant cover ; Radiation ; Sensible heat ; Sensible heat flux ; Sensible heat transfer ; Simulation ; Skin temperature ; Street canyons ; Surface temperature ; Temperature gradients ; Thermal environments ; Thermal simulation ; thermodynamic environment ; Urban areas ; Urban climatology ; urban fraction ; Urban heat islands ; urban morphology parameters ; Urbanization ; Weather forecasting ; Wind ; Wind speed ; WRF model</subject><ispartof>Atmosphere, 2023-04, Vol.14 (4), p.719</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c365t-7b81e88100c4f1dbc956496db8cb15ca7208e401e5fd640c1a0ae3cbcef40fce3</cites><orcidid>0000-0002-9698-3691 ; 0000-0003-2289-0609</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2806483122/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2806483122?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><creatorcontrib>Shen, Chong</creatorcontrib><creatorcontrib>Liu, Yiming</creatorcontrib><creatorcontrib>Dai, Wei</creatorcontrib><creatorcontrib>Chen, Xiaoyang</creatorcontrib><creatorcontrib>Fan, Qi</creatorcontrib><creatorcontrib>Wang, Xuemei</creatorcontrib><creatorcontrib>Chan, Pakwai</creatorcontrib><creatorcontrib>Wang, Chunlin</creatorcontrib><creatorcontrib>Pan, Weijuan</creatorcontrib><creatorcontrib>Li, Jieyi</creatorcontrib><creatorcontrib>Li, Xiaohui</creatorcontrib><creatorcontrib>Wu, Jie</creatorcontrib><title>The Influence of Refined Urban Morphological Parameters on Dynamical and Thermal Fields in a Single-Layer Urban Canopy Model</title><title>Atmosphere</title><description>In this study, localised and non-uniform urban morphology (UM) and urban fraction (UF) parameters are implemented in a single-layer urban canopy scheme in the Weather Research and Forecasting (WRF) mesoscale meteorological model. The purpose of this research is to evaluate the effect of the refined parameterisation scheme on the simulation of dynamic and thermal fields in the urban canopy of the Guangzhou metropolitan area. The results showed that, compared with the default urban canopy parameters of the WRF model, using the localised UM parameters resulted in the most significant improvement in the 10 m wind speed simulation. In urban districts, the mean bias between the observed and simulated 10 m wind speed was reduced significantly by 59% from 2.63 m/s to 1.09 m/s during the daytime. For the thermal environment simulation during the daytime, higher UF and UM values resulted in lower surface albedos and generated narrower street canyons compared with the default modelling setting, which caused more heat to be trapped in the urban canopy and ultimately led to an increase in the surface skin temperature (TSK) and a largely increased ground heat flux (GRD). As a result, at night, more heat was transferred from the ground to the surface, producing a higher TSK. The effect of the localised UF on the sensible heat flux (HFX) was closely related to the near-surface temperature gradient. The UM caused the HFX to increase during the daytime, which was related to the near-surface heat exchange coefficient in the lower model layers. As the high-resolution UM significantly altered the urban geometry, the dynamic environment simulation resulted in a large increase in friction velocity and a decrease in wind speed.</description><subject>Atmospheric boundary layer</subject><subject>Canopies</subject><subject>Canopies, Architectural</subject><subject>Canopy</subject><subject>Datasets</subject><subject>Daytime</subject><subject>Enthalpy</subject><subject>Environment simulation</subject><subject>Environmental aspects</subject><subject>Exchange coefficients</subject><subject>Fields</subject><subject>Geometry</subject><subject>Guangzhou</subject><subject>Heat</subject><subject>Heat exchange</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Mathematical models</subject><subject>Metropolitan areas</subject><subject>Modelling</subject><subject>Morphology</subject><subject>Parameterization</subject><subject>Parameters</subject><subject>Plant cover</subject><subject>Radiation</subject><subject>Sensible heat</subject><subject>Sensible heat flux</subject><subject>Sensible heat transfer</subject><subject>Simulation</subject><subject>Skin temperature</subject><subject>Street canyons</subject><subject>Surface temperature</subject><subject>Temperature gradients</subject><subject>Thermal environments</subject><subject>Thermal simulation</subject><subject>thermodynamic environment</subject><subject>Urban areas</subject><subject>Urban climatology</subject><subject>urban fraction</subject><subject>Urban heat islands</subject><subject>urban morphology parameters</subject><subject>Urbanization</subject><subject>Weather forecasting</subject><subject>Wind</subject><subject>Wind speed</subject><subject>WRF model</subject><issn>2073-4433</issn><issn>2073-4433</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkU1rHDEMhk1poGGTY--Gnie1x54ZzzFs87GwIaVJzkZjyxsvM_bWnj0s5MfHyYbQSgeJF-lB6CXkO2cXQvTsJ8xTzFwyyTrefyGnNetEJaUQX__pv5HznLeshOxFLeQpeXl8RroKbtxjMEijo3_Q-YCWPqUBAr2Lafccx7jxBkb6GxJMOGPKNAb66xBgetchWFpAaSr9tcfRZuoDBfrgw2bEag0HTB_AJYS4OxSuxfGMnDgYM55_1AV5ur56XN5W6_ub1fJyXRnRNnPVDYqjUpwxIx23g-mbVvatHZQZeGOgq5lCyTg2zraSGQ4MUJjBoJPMGRQLsjpybYSt3iU_QTroCF6_CzFtNKTZmxF14wYUtneuFr3kQ6NsL8DVbdO12DEHhfXjyNql-HePedbbuE-hnK9rxVqpBK_rMnVxnNpAgfrg4pzAlLRYPhZD-XHRLzvZCaZ4cWZBquOCSTHnhO7zTM70m8H6P4PFK0Y_mW0</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Shen, Chong</creator><creator>Liu, Yiming</creator><creator>Dai, Wei</creator><creator>Chen, Xiaoyang</creator><creator>Fan, Qi</creator><creator>Wang, Xuemei</creator><creator>Chan, Pakwai</creator><creator>Wang, Chunlin</creator><creator>Pan, Weijuan</creator><creator>Li, Jieyi</creator><creator>Li, Xiaohui</creator><creator>Wu, Jie</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9698-3691</orcidid><orcidid>https://orcid.org/0000-0003-2289-0609</orcidid></search><sort><creationdate>20230401</creationdate><title>The Influence of Refined Urban Morphological Parameters on Dynamical and Thermal Fields in a Single-Layer Urban Canopy Model</title><author>Shen, Chong ; Liu, Yiming ; Dai, Wei ; Chen, Xiaoyang ; Fan, Qi ; Wang, Xuemei ; Chan, Pakwai ; Wang, Chunlin ; Pan, Weijuan ; Li, Jieyi ; Li, Xiaohui ; Wu, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-7b81e88100c4f1dbc956496db8cb15ca7208e401e5fd640c1a0ae3cbcef40fce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Atmospheric boundary layer</topic><topic>Canopies</topic><topic>Canopies, Architectural</topic><topic>Canopy</topic><topic>Datasets</topic><topic>Daytime</topic><topic>Enthalpy</topic><topic>Environment simulation</topic><topic>Environmental aspects</topic><topic>Exchange coefficients</topic><topic>Fields</topic><topic>Geometry</topic><topic>Guangzhou</topic><topic>Heat</topic><topic>Heat exchange</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Mathematical models</topic><topic>Metropolitan areas</topic><topic>Modelling</topic><topic>Morphology</topic><topic>Parameterization</topic><topic>Parameters</topic><topic>Plant cover</topic><topic>Radiation</topic><topic>Sensible heat</topic><topic>Sensible heat flux</topic><topic>Sensible heat transfer</topic><topic>Simulation</topic><topic>Skin temperature</topic><topic>Street canyons</topic><topic>Surface temperature</topic><topic>Temperature gradients</topic><topic>Thermal environments</topic><topic>Thermal simulation</topic><topic>thermodynamic environment</topic><topic>Urban areas</topic><topic>Urban climatology</topic><topic>urban fraction</topic><topic>Urban heat islands</topic><topic>urban morphology parameters</topic><topic>Urbanization</topic><topic>Weather forecasting</topic><topic>Wind</topic><topic>Wind speed</topic><topic>WRF model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Chong</creatorcontrib><creatorcontrib>Liu, Yiming</creatorcontrib><creatorcontrib>Dai, Wei</creatorcontrib><creatorcontrib>Chen, Xiaoyang</creatorcontrib><creatorcontrib>Fan, Qi</creatorcontrib><creatorcontrib>Wang, Xuemei</creatorcontrib><creatorcontrib>Chan, Pakwai</creatorcontrib><creatorcontrib>Wang, Chunlin</creatorcontrib><creatorcontrib>Pan, Weijuan</creatorcontrib><creatorcontrib>Li, Jieyi</creatorcontrib><creatorcontrib>Li, Xiaohui</creatorcontrib><creatorcontrib>Wu, Jie</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Atmosphere</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Chong</au><au>Liu, Yiming</au><au>Dai, Wei</au><au>Chen, Xiaoyang</au><au>Fan, Qi</au><au>Wang, Xuemei</au><au>Chan, Pakwai</au><au>Wang, Chunlin</au><au>Pan, Weijuan</au><au>Li, Jieyi</au><au>Li, Xiaohui</au><au>Wu, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Influence of Refined Urban Morphological Parameters on Dynamical and Thermal Fields in a Single-Layer Urban Canopy Model</atitle><jtitle>Atmosphere</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>14</volume><issue>4</issue><spage>719</spage><pages>719-</pages><issn>2073-4433</issn><eissn>2073-4433</eissn><abstract>In this study, localised and non-uniform urban morphology (UM) and urban fraction (UF) parameters are implemented in a single-layer urban canopy scheme in the Weather Research and Forecasting (WRF) mesoscale meteorological model. The purpose of this research is to evaluate the effect of the refined parameterisation scheme on the simulation of dynamic and thermal fields in the urban canopy of the Guangzhou metropolitan area. The results showed that, compared with the default urban canopy parameters of the WRF model, using the localised UM parameters resulted in the most significant improvement in the 10 m wind speed simulation. In urban districts, the mean bias between the observed and simulated 10 m wind speed was reduced significantly by 59% from 2.63 m/s to 1.09 m/s during the daytime. For the thermal environment simulation during the daytime, higher UF and UM values resulted in lower surface albedos and generated narrower street canyons compared with the default modelling setting, which caused more heat to be trapped in the urban canopy and ultimately led to an increase in the surface skin temperature (TSK) and a largely increased ground heat flux (GRD). As a result, at night, more heat was transferred from the ground to the surface, producing a higher TSK. The effect of the localised UF on the sensible heat flux (HFX) was closely related to the near-surface temperature gradient. The UM caused the HFX to increase during the daytime, which was related to the near-surface heat exchange coefficient in the lower model layers. As the high-resolution UM significantly altered the urban geometry, the dynamic environment simulation resulted in a large increase in friction velocity and a decrease in wind speed.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/atmos14040719</doi><orcidid>https://orcid.org/0000-0002-9698-3691</orcidid><orcidid>https://orcid.org/0000-0003-2289-0609</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4433 |
ispartof | Atmosphere, 2023-04, Vol.14 (4), p.719 |
issn | 2073-4433 2073-4433 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5fbe3d9ff23941b58d93af26576e70fa |
source | Publicly Available Content (ProQuest) |
subjects | Atmospheric boundary layer Canopies Canopies, Architectural Canopy Datasets Daytime Enthalpy Environment simulation Environmental aspects Exchange coefficients Fields Geometry Guangzhou Heat Heat exchange Heat flux Heat transfer Mathematical models Metropolitan areas Modelling Morphology Parameterization Parameters Plant cover Radiation Sensible heat Sensible heat flux Sensible heat transfer Simulation Skin temperature Street canyons Surface temperature Temperature gradients Thermal environments Thermal simulation thermodynamic environment Urban areas Urban climatology urban fraction Urban heat islands urban morphology parameters Urbanization Weather forecasting Wind Wind speed WRF model |
title | The Influence of Refined Urban Morphological Parameters on Dynamical and Thermal Fields in a Single-Layer Urban Canopy Model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A54%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Influence%20of%20Refined%20Urban%20Morphological%20Parameters%20on%20Dynamical%20and%20Thermal%20Fields%20in%20a%20Single-Layer%20Urban%20Canopy%20Model&rft.jtitle=Atmosphere&rft.au=Shen,%20Chong&rft.date=2023-04-01&rft.volume=14&rft.issue=4&rft.spage=719&rft.pages=719-&rft.issn=2073-4433&rft.eissn=2073-4433&rft_id=info:doi/10.3390/atmos14040719&rft_dat=%3Cgale_doaj_%3EA747308143%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c365t-7b81e88100c4f1dbc956496db8cb15ca7208e401e5fd640c1a0ae3cbcef40fce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2806483122&rft_id=info:pmid/&rft_galeid=A747308143&rfr_iscdi=true |