Loading…

Formulation and characterization of a novel cutaneous wound healing ointment by silver nanoparticles containing Citrus lemon leaf: A chemobiological study

Formulating new wound-healing ointments by natural compounds is the first research priority in the developing and developed countries. This study was intended to provide green formulation of Ag-NP ointment containing Citrus lemon leaf aqueous extract and examine its capability of healing cutaneous w...

Full description

Saved in:
Bibliographic Details
Published in:Arabian journal of chemistry 2021-07, Vol.14 (7), p.103246, Article 103246
Main Authors: Abbasi, Naser, Ghaneialvar, Hori, Moradi, Rohallah, Zangeneh, Mohammad Mahdi, Zangeneh, Akram
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Formulating new wound-healing ointments by natural compounds is the first research priority in the developing and developed countries. This study was intended to provide green formulation of Ag-NP ointment containing Citrus lemon leaf aqueous extract and examine its capability of healing cutaneous wounds and its antioxidant and cytotoxicity activities under in vitro and in vivo conditions. Different techniques, including UV–Vis and FT-IR spectroscopy, were used to characterize Ag-NPs. MTT assay was used to investigate cytotoxicity property of Ag-NPs. Antioxidant activity of Ag-NPs were examined by DPPH in the presence of butylated hydroxytoluene as positive control. Parameters of cutaneous wound healing were measured both histopathologically and biochemically. Clear peak at 429 nm shown by UV–Vis spectroscopy indicated formation of Ag-NPs. In FT-IR spectroscopy, presence of many antioxidant compounds provided an excellent condition to reduce silver in Ag-NPs. FE-SEM and TEM images showed spherical Ag-NPs with an average size of 25.1 nm. The synthesized silver nanoparticles had excellent cell viability on the HUVECs line and indicated this method was nontoxic. Application of Ag-NP ointment improved wound healing parameters significantly (P ≤ 0.01). Ag-NPs reduced wound areas, total cells, neutrophils and lymphocytes significantly (P ≤ 0.01) and increased wound contracture, vessels, hexosamines, hydroxyl proline, hexuronic acid, fibrocytes, fibroblasts and fibrocyte/ fibroblast ratios significantly (P ≤ 0.01). Once our results are verified by clinically experimental studies, Ag-NP ointment can be used as a modern one to treat several types of wounds, especially cutaneous ones, in humans.
ISSN:1878-5352
1878-5379
DOI:10.1016/j.arabjc.2021.103246