Loading…
Evaluating Different TiO2 Nanoflower-Based Composites for Humidity Detection
Unique three-dimensional (3D) titanium dioxide (TiO2) nanoflowers (TFNA) have shown great potential for humidity sensing applications, due to their large surface area-to-volume ratio and high hydrophilicity. The formation of a composite with other materials could further enhance the performance of t...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2022-08, Vol.22 (15), p.5794 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Unique three-dimensional (3D) titanium dioxide (TiO2) nanoflowers (TFNA) have shown great potential for humidity sensing applications, due to their large surface area-to-volume ratio and high hydrophilicity. The formation of a composite with other materials could further enhance the performance of this material. In this work, the effect of different types of composites on the performance of a TNFA-based humidity sensor was examined. NiO, ZnO, rGO, and PVDF have been explored as possible composite pairing candidates with TiO2 nanoflowers, which were prepared via a modified solution immersion method. The properties of the composites were examined using field emission electron spectroscopy (FESEM), X-ray diffractometry (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), current-voltage (I-V) analysis, Hall effect measurement, and contact angle measurement. The performance of the humidity sensor was assessed using a humidity sensor measurement system inside a humidity-controlled chamber. Based on the result, the combination of TiO2 with rGO produced the highest sensor response at 39,590%. The achievement is attributed to the increase in the electrical conductivity, hydrophilicity, and specific surface area of the composite. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s22155794 |