Loading…
A Data-Driven-Based Fault Diagnosis Approach for Electrical Power DC-DC Inverter by Using Modified Convolutional Neural Network With Global Average Pooling and 2-D Feature Image
A novel convolutional neural network namely the modified CNN-GAP model is proposed for fast fault diagnosis of the DC-DC inverter. This method improves the model structure of the traditional CNN by using a global average pooling layer to replace the fully connected layer of 2~3 layers. The improved...
Saved in:
Published in: | IEEE access 2020, Vol.8, p.73677-73697 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-a2b87fdbb8a4ffb08580ab08b2df99a6fff2ae0b81cf6f72cd3a5adceebaf0593 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-a2b87fdbb8a4ffb08580ab08b2df99a6fff2ae0b81cf6f72cd3a5adceebaf0593 |
container_end_page | 73697 |
container_issue | |
container_start_page | 73677 |
container_title | IEEE access |
container_volume | 8 |
creator | Gong, Wenfeng Chen, Hui Zhang, Zehui Zhang, Meiling Gao, Haibo |
description | A novel convolutional neural network namely the modified CNN-GAP model is proposed for fast fault diagnosis of the DC-DC inverter. This method improves the model structure of the traditional CNN by using a global average pooling layer to replace the fully connected layer of 2~3 layers. The improved CNN-GAP method mainly contains an input layer, a feature extraction layer, a global average pooling (GAP) layer, and a Softmax output layer. Firstly, the raw 1-D time-series data directly input into the input layer of the established CNN-GAP diagnosis model. The 2-D feature maps are reconstructed in the input layer. Secondly, the representative features are automatically extracted from the 2-D feature maps by using multiple convolutional layers and pooling layers. Thirdly, the dimension transformation and size compression of the output image of the feature extraction layer is completed by the GAP layer. Finally, the fault diagnosis result of the DC-DC inverter is automatically output in the Softmax output layer. The proposed method is used for diagnosing the open-circuit fault of the IGBT in the isolated DC-DC inverter. The proposed method is more accurate and effective than other mainstream intelligent diagnosis methods including the SVM, KNN, DNN, and traditional CNN. The experiment results show that the diagnostic accuracy is up to 99.95%, and the testing time can reduce by more than 15%. The improved CNN-GAP method could greatly reduce the model parameter quantity of the traditional CNN more than 80%, which is more suitable for rapid fault diagnosis in electronic devices. |
doi_str_mv | 10.1109/ACCESS.2020.2988323 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_5fe16c2ca00a415382315f92806cd547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9069268</ieee_id><doaj_id>oai_doaj_org_article_5fe16c2ca00a415382315f92806cd547</doaj_id><sourcerecordid>2454092342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a2b87fdbb8a4ffb08580ab08b2df99a6fff2ae0b81cf6f72cd3a5adceebaf0593</originalsourceid><addsrcrecordid>eNpNkcFu3CAQhq2qlRqleYJckHr2FoPthePW3k1XStJKadQjGuNhw9YxW8Ab5bH6hmXjKCqXnxnm_5Dmz7LLgi6Kgsovq6ZZ390tGGV0waQQnPF32Rkrapnzitfv_7t_zC5C2NN0RGpVy7Ps74q0ECFvvT3imH-FgD3ZwDRE0lrYjS7YQFaHg3egH4hxnqwH1NFbDQP54Z7Qk7bJ24ZsxyP6mMrumdwHO-7IjeutsQnXuPHohilaNybTLU7-ReKT87_JLxsfyNXgutRbJQTsMHHdcCLA2BOWt2SDECePZPuYXj9lHwwMAS9e9Ty736x_Nt_y6-9X22Z1neuSipgD68TS9F0noDSmo6ISFJJ0rDdSQm2MYYC0E4U2tVky3XOooNeIHRhaSX6ebWdu72CvDt4-gn9WDqx6aTi_U-Cj1QOqymBRa6aBUiiLigvGi8pIJmit-6pcJtbnmZX2-GfCENXeTT5tIyhWViWVjJcsTfF5SnsXgkfz9mtB1SlqNUetTlGr16iT63J2WUR8c0haS1YL_g-Qsqak</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454092342</pqid></control><display><type>article</type><title>A Data-Driven-Based Fault Diagnosis Approach for Electrical Power DC-DC Inverter by Using Modified Convolutional Neural Network With Global Average Pooling and 2-D Feature Image</title><source>IEEE Open Access Journals</source><creator>Gong, Wenfeng ; Chen, Hui ; Zhang, Zehui ; Zhang, Meiling ; Gao, Haibo</creator><creatorcontrib>Gong, Wenfeng ; Chen, Hui ; Zhang, Zehui ; Zhang, Meiling ; Gao, Haibo</creatorcontrib><description>A novel convolutional neural network namely the modified CNN-GAP model is proposed for fast fault diagnosis of the DC-DC inverter. This method improves the model structure of the traditional CNN by using a global average pooling layer to replace the fully connected layer of 2~3 layers. The improved CNN-GAP method mainly contains an input layer, a feature extraction layer, a global average pooling (GAP) layer, and a Softmax output layer. Firstly, the raw 1-D time-series data directly input into the input layer of the established CNN-GAP diagnosis model. The 2-D feature maps are reconstructed in the input layer. Secondly, the representative features are automatically extracted from the 2-D feature maps by using multiple convolutional layers and pooling layers. Thirdly, the dimension transformation and size compression of the output image of the feature extraction layer is completed by the GAP layer. Finally, the fault diagnosis result of the DC-DC inverter is automatically output in the Softmax output layer. The proposed method is used for diagnosing the open-circuit fault of the IGBT in the isolated DC-DC inverter. The proposed method is more accurate and effective than other mainstream intelligent diagnosis methods including the SVM, KNN, DNN, and traditional CNN. The experiment results show that the diagnostic accuracy is up to 99.95%, and the testing time can reduce by more than 15%. The improved CNN-GAP method could greatly reduce the model parameter quantity of the traditional CNN more than 80%, which is more suitable for rapid fault diagnosis in electronic devices.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.2988323</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>2-D feature image ; Artificial neural networks ; Circuit faults ; Circuits ; convolutional neural network ; data-driven ; DC-DC inverter ; deep learning ; Diagnostic systems ; Electronic devices ; Fault diagnosis ; Feature extraction ; Feature maps ; global average pooling ; IGBT open-circuit fault ; Image compression ; Insulated gate bipolar transistors ; Intelligent fault diagnosis ; Inverters ; Machine learning ; Marine vehicles ; Medical imaging ; Neural networks ; Testing time ; Two dimensional models</subject><ispartof>IEEE access, 2020, Vol.8, p.73677-73697</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a2b87fdbb8a4ffb08580ab08b2df99a6fff2ae0b81cf6f72cd3a5adceebaf0593</citedby><cites>FETCH-LOGICAL-c408t-a2b87fdbb8a4ffb08580ab08b2df99a6fff2ae0b81cf6f72cd3a5adceebaf0593</cites><orcidid>0000-0002-2641-4733 ; 0000-0002-2330-7705 ; 0000-0002-2224-7085 ; 0000-0003-2388-6716</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9069268$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4021,27631,27921,27922,27923,54931</link.rule.ids></links><search><creatorcontrib>Gong, Wenfeng</creatorcontrib><creatorcontrib>Chen, Hui</creatorcontrib><creatorcontrib>Zhang, Zehui</creatorcontrib><creatorcontrib>Zhang, Meiling</creatorcontrib><creatorcontrib>Gao, Haibo</creatorcontrib><title>A Data-Driven-Based Fault Diagnosis Approach for Electrical Power DC-DC Inverter by Using Modified Convolutional Neural Network With Global Average Pooling and 2-D Feature Image</title><title>IEEE access</title><addtitle>Access</addtitle><description>A novel convolutional neural network namely the modified CNN-GAP model is proposed for fast fault diagnosis of the DC-DC inverter. This method improves the model structure of the traditional CNN by using a global average pooling layer to replace the fully connected layer of 2~3 layers. The improved CNN-GAP method mainly contains an input layer, a feature extraction layer, a global average pooling (GAP) layer, and a Softmax output layer. Firstly, the raw 1-D time-series data directly input into the input layer of the established CNN-GAP diagnosis model. The 2-D feature maps are reconstructed in the input layer. Secondly, the representative features are automatically extracted from the 2-D feature maps by using multiple convolutional layers and pooling layers. Thirdly, the dimension transformation and size compression of the output image of the feature extraction layer is completed by the GAP layer. Finally, the fault diagnosis result of the DC-DC inverter is automatically output in the Softmax output layer. The proposed method is used for diagnosing the open-circuit fault of the IGBT in the isolated DC-DC inverter. The proposed method is more accurate and effective than other mainstream intelligent diagnosis methods including the SVM, KNN, DNN, and traditional CNN. The experiment results show that the diagnostic accuracy is up to 99.95%, and the testing time can reduce by more than 15%. The improved CNN-GAP method could greatly reduce the model parameter quantity of the traditional CNN more than 80%, which is more suitable for rapid fault diagnosis in electronic devices.</description><subject>2-D feature image</subject><subject>Artificial neural networks</subject><subject>Circuit faults</subject><subject>Circuits</subject><subject>convolutional neural network</subject><subject>data-driven</subject><subject>DC-DC inverter</subject><subject>deep learning</subject><subject>Diagnostic systems</subject><subject>Electronic devices</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>global average pooling</subject><subject>IGBT open-circuit fault</subject><subject>Image compression</subject><subject>Insulated gate bipolar transistors</subject><subject>Intelligent fault diagnosis</subject><subject>Inverters</subject><subject>Machine learning</subject><subject>Marine vehicles</subject><subject>Medical imaging</subject><subject>Neural networks</subject><subject>Testing time</subject><subject>Two dimensional models</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkcFu3CAQhq2qlRqleYJckHr2FoPthePW3k1XStJKadQjGuNhw9YxW8Ab5bH6hmXjKCqXnxnm_5Dmz7LLgi6Kgsovq6ZZ390tGGV0waQQnPF32Rkrapnzitfv_7t_zC5C2NN0RGpVy7Ps74q0ECFvvT3imH-FgD3ZwDRE0lrYjS7YQFaHg3egH4hxnqwH1NFbDQP54Z7Qk7bJ24ZsxyP6mMrumdwHO-7IjeutsQnXuPHohilaNybTLU7-ReKT87_JLxsfyNXgutRbJQTsMHHdcCLA2BOWt2SDECePZPuYXj9lHwwMAS9e9Ty736x_Nt_y6-9X22Z1neuSipgD68TS9F0noDSmo6ISFJJ0rDdSQm2MYYC0E4U2tVky3XOooNeIHRhaSX6ebWdu72CvDt4-gn9WDqx6aTi_U-Cj1QOqymBRa6aBUiiLigvGi8pIJmit-6pcJtbnmZX2-GfCENXeTT5tIyhWViWVjJcsTfF5SnsXgkfz9mtB1SlqNUetTlGr16iT63J2WUR8c0haS1YL_g-Qsqak</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Gong, Wenfeng</creator><creator>Chen, Hui</creator><creator>Zhang, Zehui</creator><creator>Zhang, Meiling</creator><creator>Gao, Haibo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2641-4733</orcidid><orcidid>https://orcid.org/0000-0002-2330-7705</orcidid><orcidid>https://orcid.org/0000-0002-2224-7085</orcidid><orcidid>https://orcid.org/0000-0003-2388-6716</orcidid></search><sort><creationdate>2020</creationdate><title>A Data-Driven-Based Fault Diagnosis Approach for Electrical Power DC-DC Inverter by Using Modified Convolutional Neural Network With Global Average Pooling and 2-D Feature Image</title><author>Gong, Wenfeng ; Chen, Hui ; Zhang, Zehui ; Zhang, Meiling ; Gao, Haibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a2b87fdbb8a4ffb08580ab08b2df99a6fff2ae0b81cf6f72cd3a5adceebaf0593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>2-D feature image</topic><topic>Artificial neural networks</topic><topic>Circuit faults</topic><topic>Circuits</topic><topic>convolutional neural network</topic><topic>data-driven</topic><topic>DC-DC inverter</topic><topic>deep learning</topic><topic>Diagnostic systems</topic><topic>Electronic devices</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>global average pooling</topic><topic>IGBT open-circuit fault</topic><topic>Image compression</topic><topic>Insulated gate bipolar transistors</topic><topic>Intelligent fault diagnosis</topic><topic>Inverters</topic><topic>Machine learning</topic><topic>Marine vehicles</topic><topic>Medical imaging</topic><topic>Neural networks</topic><topic>Testing time</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Wenfeng</creatorcontrib><creatorcontrib>Chen, Hui</creatorcontrib><creatorcontrib>Zhang, Zehui</creatorcontrib><creatorcontrib>Zhang, Meiling</creatorcontrib><creatorcontrib>Gao, Haibo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Wenfeng</au><au>Chen, Hui</au><au>Zhang, Zehui</au><au>Zhang, Meiling</au><au>Gao, Haibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Data-Driven-Based Fault Diagnosis Approach for Electrical Power DC-DC Inverter by Using Modified Convolutional Neural Network With Global Average Pooling and 2-D Feature Image</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>73677</spage><epage>73697</epage><pages>73677-73697</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>A novel convolutional neural network namely the modified CNN-GAP model is proposed for fast fault diagnosis of the DC-DC inverter. This method improves the model structure of the traditional CNN by using a global average pooling layer to replace the fully connected layer of 2~3 layers. The improved CNN-GAP method mainly contains an input layer, a feature extraction layer, a global average pooling (GAP) layer, and a Softmax output layer. Firstly, the raw 1-D time-series data directly input into the input layer of the established CNN-GAP diagnosis model. The 2-D feature maps are reconstructed in the input layer. Secondly, the representative features are automatically extracted from the 2-D feature maps by using multiple convolutional layers and pooling layers. Thirdly, the dimension transformation and size compression of the output image of the feature extraction layer is completed by the GAP layer. Finally, the fault diagnosis result of the DC-DC inverter is automatically output in the Softmax output layer. The proposed method is used for diagnosing the open-circuit fault of the IGBT in the isolated DC-DC inverter. The proposed method is more accurate and effective than other mainstream intelligent diagnosis methods including the SVM, KNN, DNN, and traditional CNN. The experiment results show that the diagnostic accuracy is up to 99.95%, and the testing time can reduce by more than 15%. The improved CNN-GAP method could greatly reduce the model parameter quantity of the traditional CNN more than 80%, which is more suitable for rapid fault diagnosis in electronic devices.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.2988323</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-2641-4733</orcidid><orcidid>https://orcid.org/0000-0002-2330-7705</orcidid><orcidid>https://orcid.org/0000-0002-2224-7085</orcidid><orcidid>https://orcid.org/0000-0003-2388-6716</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.73677-73697 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_5fe16c2ca00a415382315f92806cd547 |
source | IEEE Open Access Journals |
subjects | 2-D feature image Artificial neural networks Circuit faults Circuits convolutional neural network data-driven DC-DC inverter deep learning Diagnostic systems Electronic devices Fault diagnosis Feature extraction Feature maps global average pooling IGBT open-circuit fault Image compression Insulated gate bipolar transistors Intelligent fault diagnosis Inverters Machine learning Marine vehicles Medical imaging Neural networks Testing time Two dimensional models |
title | A Data-Driven-Based Fault Diagnosis Approach for Electrical Power DC-DC Inverter by Using Modified Convolutional Neural Network With Global Average Pooling and 2-D Feature Image |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A11%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Data-Driven-Based%20Fault%20Diagnosis%20Approach%20for%20Electrical%20Power%20DC-DC%20Inverter%20by%20Using%20Modified%20Convolutional%20Neural%20Network%20With%20Global%20Average%20Pooling%20and%202-D%20Feature%20Image&rft.jtitle=IEEE%20access&rft.au=Gong,%20Wenfeng&rft.date=2020&rft.volume=8&rft.spage=73677&rft.epage=73697&rft.pages=73677-73697&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.2988323&rft_dat=%3Cproquest_doaj_%3E2454092342%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-a2b87fdbb8a4ffb08580ab08b2df99a6fff2ae0b81cf6f72cd3a5adceebaf0593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454092342&rft_id=info:pmid/&rft_ieee_id=9069268&rfr_iscdi=true |