Loading…
Dark septate endophytic fungi associated with pioneer grass inhabiting volcanic deposits and their functions in promoting plant growth
Growth of the pioneer grass Miscanthus condensatus, one of the first vegetation types to be established on volcanic deposits, is promoted by root-associated fungi, particularly dark septate endophytes (DSEs). Fungal taxa within DSEs colonize the root of Miscanthus condensatus in oligotrophic Andosol...
Saved in:
Published in: | Biogeosciences 2023-11, Vol.20 (23), p.4737-4749 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Growth of the pioneer grass Miscanthus condensatus, one of the first vegetation types to be established on volcanic deposits, is promoted by root-associated fungi, particularly dark septate endophytes (DSEs). Fungal taxa within DSEs colonize the root of Miscanthus condensatus in oligotrophic Andosol, and their function in plant growth promotion remains largely unknown. We, therefore, comprehensively assessed the composition of the DSE community associated with Miscanthus condensatus root in volcanic ecosystems using the approaches of both metabarcoding (next-generation sequencing) and isolation (culturing). Also, the promotion effects of DSEs on plant growth (rice as a proxy) were evaluated by inoculation of core isolates to rice roots. Here, we found the following: (i) 70 % of culturable fungi that colonized Miscanthus condensatus phylogenetically belonged to DSEs; (ii) seven orders were identified by both sequencing and culturing methods; and (iii) inoculation of DSE isolates (Phialocephala fortinii, P. helvetica, and Phialocephala sp.) validated their effects on rice growth, particularly under an extremely low pH condition (compared to the control without inoculation, rice biomass was enhanced 7.6-fold after inoculation of P. fortinii). This study helps improve our understanding of the community of Miscanthus condensatus-associated DSE fungi and their functions in promoting plant growth. |
---|---|
ISSN: | 1726-4189 1726-4170 1726-4189 |
DOI: | 10.5194/bg-20-4737-2023 |