Loading…
The catalytic performance of acid-modified Hβ molecular sieves for environmentally friendly acylation of 2-methylnaphthalene
2,6-Methylacylnaphthalene is an important organic chemical raw material, mainly used as a precursor for synthesizing polyethylene 2,6-naphthalene dicarboxylate (PEN). The heterogeneous catalyst molecular sieve catalyzes the acylation of 2-methylnaphthalene to synthesize β,β-methylacylnaphthalene, wh...
Saved in:
Published in: | Green processing and synthesis 2022-08, Vol.11 (1), p.732-746 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | 2,6-Methylacylnaphthalene is an important organic chemical raw material, mainly used as a precursor for synthesizing polyethylene 2,6-naphthalene dicarboxylate (PEN). The heterogeneous catalyst molecular sieve catalyzes the acylation of 2-methylnaphthalene to synthesize β,β-methylacylnaphthalene, which has good activity, is green and environmentally friendly, with simple post-treatment. Different molecular sieves and reaction solvents were selected, and Hβ molecular sieves were more suitable for the acylation reaction of 2-methylnaphthalene. The reaction results were better when sulfolane was used as a solvent in this paper. The catalytic performances of citric acid-modified Hβ molecular sieve (SiO
/Al
of 25) and unmodified molecular sieve were investigated and compared. The results showed that modification with low-concentration citric acid increased the amount of mediate strong acid and Bronsted acid, the specific surface area, pore volume, and pore size of Hβ zeolite. When the concentration of citric acid was 0.3 mol·L
, the modification time was 48 h and the calcination at 550°C for 3 h had the best catalytic activity. By further optimizing the acylation process, the conversion rate of 2-methylnaphthalene increased to 88.82%, and the yield of β,β-methyl propyl naphthalene increased to 82.12%. |
---|---|
ISSN: | 2191-9550 2191-9542 2191-9550 |
DOI: | 10.1515/gps-2022-0067 |