Loading…
MnO2-Coated Dual Core–Shell Spindle-Like Nanorods for Improved Capacity Retention of Lithium–Sulfur Batteries
The emerging need for high-performance lithium–sulfur batteries has motivated many researchers to investigate different designs. However, the polysulfide shuttle effect, which is the result of dissolution of many intermediate polysulfides in electrolyte, has still remained unsolved. In this study, w...
Saved in:
Published in: | ChemEngineering 2020-06, Vol.4 (2), p.42 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c397t-fba1cbdec6e3d0b4594169980addaa2e2719032797adfbc2ca97505f23848b3d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c397t-fba1cbdec6e3d0b4594169980addaa2e2719032797adfbc2ca97505f23848b3d3 |
container_end_page | |
container_issue | 2 |
container_start_page | 42 |
container_title | ChemEngineering |
container_volume | 4 |
creator | Dunya, Hamza Ashuri, Maziar Alramahi, Dana Yue, Zheng Kucuk, Kamil Segre, Carlo U. Mandal, Braja K. |
description | The emerging need for high-performance lithium–sulfur batteries has motivated many researchers to investigate different designs. However, the polysulfide shuttle effect, which is the result of dissolution of many intermediate polysulfides in electrolyte, has still remained unsolved. In this study, we have designed a sulfur-filled dual core–shell spindle-like nanorod structure coated with manganese oxide (S@HCNR@MnO2) to achieve a high-performance cathode for lithium–sulfur batteries. The cathode showed an initial discharge capacity of 1661 mA h g−1 with 80% retention of capacity over 70 cycles at a 0.2C rate. Furthermore, compared with the nanorods without any coating (S@HCNR), the MnO2-coated material displayed superior rate capability, cycling stability, and Coulombic efficiency. The synergistic effects of the nitrogen-doped hollow carbon host and the MnO2 second shell are responsible for the improved electrochemical performance of this nanostructure. |
doi_str_mv | 10.3390/chemengineering4020042 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_60092f45862a42549d6df7f483f8adca</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_60092f45862a42549d6df7f483f8adca</doaj_id><sourcerecordid>2416648576</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-fba1cbdec6e3d0b4594169980addaa2e2719032797adfbc2ca97505f23848b3d3</originalsourceid><addsrcrecordid>eNptkU2O1DAQhSMEEqNhroAssQ5UbCexlxD-WmoYiYG1VbHL3W7Sdo_jIM2OO3BDTkKGRogFqyqVXn31Sq-qnjbwXAgNL-yejhR3IRLlEHcSOIDkD6oLLqCte1Dy4T_94-pqng8AwJXkTSMuqtsP8ZrXQ8JCjr1ecGJDyvTz-4-bPU0TuzmF6Caqt-ErsY8YU05uZj5ltjmecvq2Lg14QhvKHftEhWIJKbLk2TaUfViO96Bl8ktmr7CU1SLNT6pHHqeZrv7Uy-rL2zefh_f19vrdZni5ra3Qfan9iI0dHdmOhINRtlo2ndYK0DlETrxvNAje6x6dHy23qPsWWs-FkmoUTlxWmzPXJTyYUw5HzHcmYTC_BynvDOYS7ESmA9Dcy1Z1HCVvpXad872XSniFzuLKenZmrT_fLjQXc0hLjqt9w1dbnVRt362q7qyyOc1zJv_3agPmPi3z_7TEL8urjwM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2416648576</pqid></control><display><type>article</type><title>MnO2-Coated Dual Core–Shell Spindle-Like Nanorods for Improved Capacity Retention of Lithium–Sulfur Batteries</title><source>Publicly Available Content Database</source><creator>Dunya, Hamza ; Ashuri, Maziar ; Alramahi, Dana ; Yue, Zheng ; Kucuk, Kamil ; Segre, Carlo U. ; Mandal, Braja K.</creator><creatorcontrib>Dunya, Hamza ; Ashuri, Maziar ; Alramahi, Dana ; Yue, Zheng ; Kucuk, Kamil ; Segre, Carlo U. ; Mandal, Braja K.</creatorcontrib><description>The emerging need for high-performance lithium–sulfur batteries has motivated many researchers to investigate different designs. However, the polysulfide shuttle effect, which is the result of dissolution of many intermediate polysulfides in electrolyte, has still remained unsolved. In this study, we have designed a sulfur-filled dual core–shell spindle-like nanorod structure coated with manganese oxide (S@HCNR@MnO2) to achieve a high-performance cathode for lithium–sulfur batteries. The cathode showed an initial discharge capacity of 1661 mA h g−1 with 80% retention of capacity over 70 cycles at a 0.2C rate. Furthermore, compared with the nanorods without any coating (S@HCNR), the MnO2-coated material displayed superior rate capability, cycling stability, and Coulombic efficiency. The synergistic effects of the nitrogen-doped hollow carbon host and the MnO2 second shell are responsible for the improved electrochemical performance of this nanostructure.</description><identifier>ISSN: 2305-7084</identifier><identifier>EISSN: 2305-7084</identifier><identifier>DOI: 10.3390/chemengineering4020042</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aqueous solutions ; Batteries ; Carbon ; Cathodes ; Chemical engineering ; Coating ; Dopamine ; Efficiency ; Electric vehicles ; Electrochemical analysis ; Electrodes ; Electrolytes ; Energy ; Graphene ; Lithium ; Lithium sulfur batteries ; Manganese dioxide ; manganese oxide ; MnO2 shell ; Nanorods ; Nitrogen ; polysulfide shuttle ; Polysulfides ; scalable synthesis ; sulfur ; Sulfur content</subject><ispartof>ChemEngineering, 2020-06, Vol.4 (2), p.42</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-fba1cbdec6e3d0b4594169980addaa2e2719032797adfbc2ca97505f23848b3d3</citedby><cites>FETCH-LOGICAL-c397t-fba1cbdec6e3d0b4594169980addaa2e2719032797adfbc2ca97505f23848b3d3</cites><orcidid>0000-0001-8610-1643 ; 0000-0003-4610-983X ; 0000-0002-7356-9754 ; 0000-0002-4336-0271 ; 0000-0001-7664-1574 ; 0000-0002-2578-2518</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2416648576/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2416648576?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Dunya, Hamza</creatorcontrib><creatorcontrib>Ashuri, Maziar</creatorcontrib><creatorcontrib>Alramahi, Dana</creatorcontrib><creatorcontrib>Yue, Zheng</creatorcontrib><creatorcontrib>Kucuk, Kamil</creatorcontrib><creatorcontrib>Segre, Carlo U.</creatorcontrib><creatorcontrib>Mandal, Braja K.</creatorcontrib><title>MnO2-Coated Dual Core–Shell Spindle-Like Nanorods for Improved Capacity Retention of Lithium–Sulfur Batteries</title><title>ChemEngineering</title><description>The emerging need for high-performance lithium–sulfur batteries has motivated many researchers to investigate different designs. However, the polysulfide shuttle effect, which is the result of dissolution of many intermediate polysulfides in electrolyte, has still remained unsolved. In this study, we have designed a sulfur-filled dual core–shell spindle-like nanorod structure coated with manganese oxide (S@HCNR@MnO2) to achieve a high-performance cathode for lithium–sulfur batteries. The cathode showed an initial discharge capacity of 1661 mA h g−1 with 80% retention of capacity over 70 cycles at a 0.2C rate. Furthermore, compared with the nanorods without any coating (S@HCNR), the MnO2-coated material displayed superior rate capability, cycling stability, and Coulombic efficiency. The synergistic effects of the nitrogen-doped hollow carbon host and the MnO2 second shell are responsible for the improved electrochemical performance of this nanostructure.</description><subject>Aqueous solutions</subject><subject>Batteries</subject><subject>Carbon</subject><subject>Cathodes</subject><subject>Chemical engineering</subject><subject>Coating</subject><subject>Dopamine</subject><subject>Efficiency</subject><subject>Electric vehicles</subject><subject>Electrochemical analysis</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Energy</subject><subject>Graphene</subject><subject>Lithium</subject><subject>Lithium sulfur batteries</subject><subject>Manganese dioxide</subject><subject>manganese oxide</subject><subject>MnO2 shell</subject><subject>Nanorods</subject><subject>Nitrogen</subject><subject>polysulfide shuttle</subject><subject>Polysulfides</subject><subject>scalable synthesis</subject><subject>sulfur</subject><subject>Sulfur content</subject><issn>2305-7084</issn><issn>2305-7084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkU2O1DAQhSMEEqNhroAssQ5UbCexlxD-WmoYiYG1VbHL3W7Sdo_jIM2OO3BDTkKGRogFqyqVXn31Sq-qnjbwXAgNL-yejhR3IRLlEHcSOIDkD6oLLqCte1Dy4T_94-pqng8AwJXkTSMuqtsP8ZrXQ8JCjr1ecGJDyvTz-4-bPU0TuzmF6Caqt-ErsY8YU05uZj5ltjmecvq2Lg14QhvKHftEhWIJKbLk2TaUfViO96Bl8ktmr7CU1SLNT6pHHqeZrv7Uy-rL2zefh_f19vrdZni5ra3Qfan9iI0dHdmOhINRtlo2ndYK0DlETrxvNAje6x6dHy23qPsWWs-FkmoUTlxWmzPXJTyYUw5HzHcmYTC_BynvDOYS7ESmA9Dcy1Z1HCVvpXad872XSniFzuLKenZmrT_fLjQXc0hLjqt9w1dbnVRt362q7qyyOc1zJv_3agPmPi3z_7TEL8urjwM</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Dunya, Hamza</creator><creator>Ashuri, Maziar</creator><creator>Alramahi, Dana</creator><creator>Yue, Zheng</creator><creator>Kucuk, Kamil</creator><creator>Segre, Carlo U.</creator><creator>Mandal, Braja K.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8610-1643</orcidid><orcidid>https://orcid.org/0000-0003-4610-983X</orcidid><orcidid>https://orcid.org/0000-0002-7356-9754</orcidid><orcidid>https://orcid.org/0000-0002-4336-0271</orcidid><orcidid>https://orcid.org/0000-0001-7664-1574</orcidid><orcidid>https://orcid.org/0000-0002-2578-2518</orcidid></search><sort><creationdate>20200601</creationdate><title>MnO2-Coated Dual Core–Shell Spindle-Like Nanorods for Improved Capacity Retention of Lithium–Sulfur Batteries</title><author>Dunya, Hamza ; Ashuri, Maziar ; Alramahi, Dana ; Yue, Zheng ; Kucuk, Kamil ; Segre, Carlo U. ; Mandal, Braja K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-fba1cbdec6e3d0b4594169980addaa2e2719032797adfbc2ca97505f23848b3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aqueous solutions</topic><topic>Batteries</topic><topic>Carbon</topic><topic>Cathodes</topic><topic>Chemical engineering</topic><topic>Coating</topic><topic>Dopamine</topic><topic>Efficiency</topic><topic>Electric vehicles</topic><topic>Electrochemical analysis</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Energy</topic><topic>Graphene</topic><topic>Lithium</topic><topic>Lithium sulfur batteries</topic><topic>Manganese dioxide</topic><topic>manganese oxide</topic><topic>MnO2 shell</topic><topic>Nanorods</topic><topic>Nitrogen</topic><topic>polysulfide shuttle</topic><topic>Polysulfides</topic><topic>scalable synthesis</topic><topic>sulfur</topic><topic>Sulfur content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dunya, Hamza</creatorcontrib><creatorcontrib>Ashuri, Maziar</creatorcontrib><creatorcontrib>Alramahi, Dana</creatorcontrib><creatorcontrib>Yue, Zheng</creatorcontrib><creatorcontrib>Kucuk, Kamil</creatorcontrib><creatorcontrib>Segre, Carlo U.</creatorcontrib><creatorcontrib>Mandal, Braja K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>ChemEngineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dunya, Hamza</au><au>Ashuri, Maziar</au><au>Alramahi, Dana</au><au>Yue, Zheng</au><au>Kucuk, Kamil</au><au>Segre, Carlo U.</au><au>Mandal, Braja K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MnO2-Coated Dual Core–Shell Spindle-Like Nanorods for Improved Capacity Retention of Lithium–Sulfur Batteries</atitle><jtitle>ChemEngineering</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>4</volume><issue>2</issue><spage>42</spage><pages>42-</pages><issn>2305-7084</issn><eissn>2305-7084</eissn><abstract>The emerging need for high-performance lithium–sulfur batteries has motivated many researchers to investigate different designs. However, the polysulfide shuttle effect, which is the result of dissolution of many intermediate polysulfides in electrolyte, has still remained unsolved. In this study, we have designed a sulfur-filled dual core–shell spindle-like nanorod structure coated with manganese oxide (S@HCNR@MnO2) to achieve a high-performance cathode for lithium–sulfur batteries. The cathode showed an initial discharge capacity of 1661 mA h g−1 with 80% retention of capacity over 70 cycles at a 0.2C rate. Furthermore, compared with the nanorods without any coating (S@HCNR), the MnO2-coated material displayed superior rate capability, cycling stability, and Coulombic efficiency. The synergistic effects of the nitrogen-doped hollow carbon host and the MnO2 second shell are responsible for the improved electrochemical performance of this nanostructure.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/chemengineering4020042</doi><orcidid>https://orcid.org/0000-0001-8610-1643</orcidid><orcidid>https://orcid.org/0000-0003-4610-983X</orcidid><orcidid>https://orcid.org/0000-0002-7356-9754</orcidid><orcidid>https://orcid.org/0000-0002-4336-0271</orcidid><orcidid>https://orcid.org/0000-0001-7664-1574</orcidid><orcidid>https://orcid.org/0000-0002-2578-2518</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2305-7084 |
ispartof | ChemEngineering, 2020-06, Vol.4 (2), p.42 |
issn | 2305-7084 2305-7084 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_60092f45862a42549d6df7f483f8adca |
source | Publicly Available Content Database |
subjects | Aqueous solutions Batteries Carbon Cathodes Chemical engineering Coating Dopamine Efficiency Electric vehicles Electrochemical analysis Electrodes Electrolytes Energy Graphene Lithium Lithium sulfur batteries Manganese dioxide manganese oxide MnO2 shell Nanorods Nitrogen polysulfide shuttle Polysulfides scalable synthesis sulfur Sulfur content |
title | MnO2-Coated Dual Core–Shell Spindle-Like Nanorods for Improved Capacity Retention of Lithium–Sulfur Batteries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A34%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MnO2-Coated%20Dual%20Core%E2%80%93Shell%20Spindle-Like%20Nanorods%20for%20Improved%20Capacity%20Retention%20of%20Lithium%E2%80%93Sulfur%20Batteries&rft.jtitle=ChemEngineering&rft.au=Dunya,%20Hamza&rft.date=2020-06-01&rft.volume=4&rft.issue=2&rft.spage=42&rft.pages=42-&rft.issn=2305-7084&rft.eissn=2305-7084&rft_id=info:doi/10.3390/chemengineering4020042&rft_dat=%3Cproquest_doaj_%3E2416648576%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-fba1cbdec6e3d0b4594169980addaa2e2719032797adfbc2ca97505f23848b3d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2416648576&rft_id=info:pmid/&rfr_iscdi=true |