Loading…

MnO2-Coated Dual Core–Shell Spindle-Like Nanorods for Improved Capacity Retention of Lithium–Sulfur Batteries

The emerging need for high-performance lithium–sulfur batteries has motivated many researchers to investigate different designs. However, the polysulfide shuttle effect, which is the result of dissolution of many intermediate polysulfides in electrolyte, has still remained unsolved. In this study, w...

Full description

Saved in:
Bibliographic Details
Published in:ChemEngineering 2020-06, Vol.4 (2), p.42
Main Authors: Dunya, Hamza, Ashuri, Maziar, Alramahi, Dana, Yue, Zheng, Kucuk, Kamil, Segre, Carlo U., Mandal, Braja K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c397t-fba1cbdec6e3d0b4594169980addaa2e2719032797adfbc2ca97505f23848b3d3
cites cdi_FETCH-LOGICAL-c397t-fba1cbdec6e3d0b4594169980addaa2e2719032797adfbc2ca97505f23848b3d3
container_end_page
container_issue 2
container_start_page 42
container_title ChemEngineering
container_volume 4
creator Dunya, Hamza
Ashuri, Maziar
Alramahi, Dana
Yue, Zheng
Kucuk, Kamil
Segre, Carlo U.
Mandal, Braja K.
description The emerging need for high-performance lithium–sulfur batteries has motivated many researchers to investigate different designs. However, the polysulfide shuttle effect, which is the result of dissolution of many intermediate polysulfides in electrolyte, has still remained unsolved. In this study, we have designed a sulfur-filled dual core–shell spindle-like nanorod structure coated with manganese oxide (S@HCNR@MnO2) to achieve a high-performance cathode for lithium–sulfur batteries. The cathode showed an initial discharge capacity of 1661 mA h g−1 with 80% retention of capacity over 70 cycles at a 0.2C rate. Furthermore, compared with the nanorods without any coating (S@HCNR), the MnO2-coated material displayed superior rate capability, cycling stability, and Coulombic efficiency. The synergistic effects of the nitrogen-doped hollow carbon host and the MnO2 second shell are responsible for the improved electrochemical performance of this nanostructure.
doi_str_mv 10.3390/chemengineering4020042
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_60092f45862a42549d6df7f483f8adca</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_60092f45862a42549d6df7f483f8adca</doaj_id><sourcerecordid>2416648576</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-fba1cbdec6e3d0b4594169980addaa2e2719032797adfbc2ca97505f23848b3d3</originalsourceid><addsrcrecordid>eNptkU2O1DAQhSMEEqNhroAssQ5UbCexlxD-WmoYiYG1VbHL3W7Sdo_jIM2OO3BDTkKGRogFqyqVXn31Sq-qnjbwXAgNL-yejhR3IRLlEHcSOIDkD6oLLqCte1Dy4T_94-pqng8AwJXkTSMuqtsP8ZrXQ8JCjr1ecGJDyvTz-4-bPU0TuzmF6Caqt-ErsY8YU05uZj5ltjmecvq2Lg14QhvKHftEhWIJKbLk2TaUfViO96Bl8ktmr7CU1SLNT6pHHqeZrv7Uy-rL2zefh_f19vrdZni5ra3Qfan9iI0dHdmOhINRtlo2ndYK0DlETrxvNAje6x6dHy23qPsWWs-FkmoUTlxWmzPXJTyYUw5HzHcmYTC_BynvDOYS7ESmA9Dcy1Z1HCVvpXad872XSniFzuLKenZmrT_fLjQXc0hLjqt9w1dbnVRt362q7qyyOc1zJv_3agPmPi3z_7TEL8urjwM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2416648576</pqid></control><display><type>article</type><title>MnO2-Coated Dual Core–Shell Spindle-Like Nanorods for Improved Capacity Retention of Lithium–Sulfur Batteries</title><source>Publicly Available Content Database</source><creator>Dunya, Hamza ; Ashuri, Maziar ; Alramahi, Dana ; Yue, Zheng ; Kucuk, Kamil ; Segre, Carlo U. ; Mandal, Braja K.</creator><creatorcontrib>Dunya, Hamza ; Ashuri, Maziar ; Alramahi, Dana ; Yue, Zheng ; Kucuk, Kamil ; Segre, Carlo U. ; Mandal, Braja K.</creatorcontrib><description>The emerging need for high-performance lithium–sulfur batteries has motivated many researchers to investigate different designs. However, the polysulfide shuttle effect, which is the result of dissolution of many intermediate polysulfides in electrolyte, has still remained unsolved. In this study, we have designed a sulfur-filled dual core–shell spindle-like nanorod structure coated with manganese oxide (S@HCNR@MnO2) to achieve a high-performance cathode for lithium–sulfur batteries. The cathode showed an initial discharge capacity of 1661 mA h g−1 with 80% retention of capacity over 70 cycles at a 0.2C rate. Furthermore, compared with the nanorods without any coating (S@HCNR), the MnO2-coated material displayed superior rate capability, cycling stability, and Coulombic efficiency. The synergistic effects of the nitrogen-doped hollow carbon host and the MnO2 second shell are responsible for the improved electrochemical performance of this nanostructure.</description><identifier>ISSN: 2305-7084</identifier><identifier>EISSN: 2305-7084</identifier><identifier>DOI: 10.3390/chemengineering4020042</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aqueous solutions ; Batteries ; Carbon ; Cathodes ; Chemical engineering ; Coating ; Dopamine ; Efficiency ; Electric vehicles ; Electrochemical analysis ; Electrodes ; Electrolytes ; Energy ; Graphene ; Lithium ; Lithium sulfur batteries ; Manganese dioxide ; manganese oxide ; MnO2 shell ; Nanorods ; Nitrogen ; polysulfide shuttle ; Polysulfides ; scalable synthesis ; sulfur ; Sulfur content</subject><ispartof>ChemEngineering, 2020-06, Vol.4 (2), p.42</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-fba1cbdec6e3d0b4594169980addaa2e2719032797adfbc2ca97505f23848b3d3</citedby><cites>FETCH-LOGICAL-c397t-fba1cbdec6e3d0b4594169980addaa2e2719032797adfbc2ca97505f23848b3d3</cites><orcidid>0000-0001-8610-1643 ; 0000-0003-4610-983X ; 0000-0002-7356-9754 ; 0000-0002-4336-0271 ; 0000-0001-7664-1574 ; 0000-0002-2578-2518</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2416648576/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2416648576?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Dunya, Hamza</creatorcontrib><creatorcontrib>Ashuri, Maziar</creatorcontrib><creatorcontrib>Alramahi, Dana</creatorcontrib><creatorcontrib>Yue, Zheng</creatorcontrib><creatorcontrib>Kucuk, Kamil</creatorcontrib><creatorcontrib>Segre, Carlo U.</creatorcontrib><creatorcontrib>Mandal, Braja K.</creatorcontrib><title>MnO2-Coated Dual Core–Shell Spindle-Like Nanorods for Improved Capacity Retention of Lithium–Sulfur Batteries</title><title>ChemEngineering</title><description>The emerging need for high-performance lithium–sulfur batteries has motivated many researchers to investigate different designs. However, the polysulfide shuttle effect, which is the result of dissolution of many intermediate polysulfides in electrolyte, has still remained unsolved. In this study, we have designed a sulfur-filled dual core–shell spindle-like nanorod structure coated with manganese oxide (S@HCNR@MnO2) to achieve a high-performance cathode for lithium–sulfur batteries. The cathode showed an initial discharge capacity of 1661 mA h g−1 with 80% retention of capacity over 70 cycles at a 0.2C rate. Furthermore, compared with the nanorods without any coating (S@HCNR), the MnO2-coated material displayed superior rate capability, cycling stability, and Coulombic efficiency. The synergistic effects of the nitrogen-doped hollow carbon host and the MnO2 second shell are responsible for the improved electrochemical performance of this nanostructure.</description><subject>Aqueous solutions</subject><subject>Batteries</subject><subject>Carbon</subject><subject>Cathodes</subject><subject>Chemical engineering</subject><subject>Coating</subject><subject>Dopamine</subject><subject>Efficiency</subject><subject>Electric vehicles</subject><subject>Electrochemical analysis</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Energy</subject><subject>Graphene</subject><subject>Lithium</subject><subject>Lithium sulfur batteries</subject><subject>Manganese dioxide</subject><subject>manganese oxide</subject><subject>MnO2 shell</subject><subject>Nanorods</subject><subject>Nitrogen</subject><subject>polysulfide shuttle</subject><subject>Polysulfides</subject><subject>scalable synthesis</subject><subject>sulfur</subject><subject>Sulfur content</subject><issn>2305-7084</issn><issn>2305-7084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkU2O1DAQhSMEEqNhroAssQ5UbCexlxD-WmoYiYG1VbHL3W7Sdo_jIM2OO3BDTkKGRogFqyqVXn31Sq-qnjbwXAgNL-yejhR3IRLlEHcSOIDkD6oLLqCte1Dy4T_94-pqng8AwJXkTSMuqtsP8ZrXQ8JCjr1ecGJDyvTz-4-bPU0TuzmF6Caqt-ErsY8YU05uZj5ltjmecvq2Lg14QhvKHftEhWIJKbLk2TaUfViO96Bl8ktmr7CU1SLNT6pHHqeZrv7Uy-rL2zefh_f19vrdZni5ra3Qfan9iI0dHdmOhINRtlo2ndYK0DlETrxvNAje6x6dHy23qPsWWs-FkmoUTlxWmzPXJTyYUw5HzHcmYTC_BynvDOYS7ESmA9Dcy1Z1HCVvpXad872XSniFzuLKenZmrT_fLjQXc0hLjqt9w1dbnVRt362q7qyyOc1zJv_3agPmPi3z_7TEL8urjwM</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Dunya, Hamza</creator><creator>Ashuri, Maziar</creator><creator>Alramahi, Dana</creator><creator>Yue, Zheng</creator><creator>Kucuk, Kamil</creator><creator>Segre, Carlo U.</creator><creator>Mandal, Braja K.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8610-1643</orcidid><orcidid>https://orcid.org/0000-0003-4610-983X</orcidid><orcidid>https://orcid.org/0000-0002-7356-9754</orcidid><orcidid>https://orcid.org/0000-0002-4336-0271</orcidid><orcidid>https://orcid.org/0000-0001-7664-1574</orcidid><orcidid>https://orcid.org/0000-0002-2578-2518</orcidid></search><sort><creationdate>20200601</creationdate><title>MnO2-Coated Dual Core–Shell Spindle-Like Nanorods for Improved Capacity Retention of Lithium–Sulfur Batteries</title><author>Dunya, Hamza ; Ashuri, Maziar ; Alramahi, Dana ; Yue, Zheng ; Kucuk, Kamil ; Segre, Carlo U. ; Mandal, Braja K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-fba1cbdec6e3d0b4594169980addaa2e2719032797adfbc2ca97505f23848b3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aqueous solutions</topic><topic>Batteries</topic><topic>Carbon</topic><topic>Cathodes</topic><topic>Chemical engineering</topic><topic>Coating</topic><topic>Dopamine</topic><topic>Efficiency</topic><topic>Electric vehicles</topic><topic>Electrochemical analysis</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Energy</topic><topic>Graphene</topic><topic>Lithium</topic><topic>Lithium sulfur batteries</topic><topic>Manganese dioxide</topic><topic>manganese oxide</topic><topic>MnO2 shell</topic><topic>Nanorods</topic><topic>Nitrogen</topic><topic>polysulfide shuttle</topic><topic>Polysulfides</topic><topic>scalable synthesis</topic><topic>sulfur</topic><topic>Sulfur content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dunya, Hamza</creatorcontrib><creatorcontrib>Ashuri, Maziar</creatorcontrib><creatorcontrib>Alramahi, Dana</creatorcontrib><creatorcontrib>Yue, Zheng</creatorcontrib><creatorcontrib>Kucuk, Kamil</creatorcontrib><creatorcontrib>Segre, Carlo U.</creatorcontrib><creatorcontrib>Mandal, Braja K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>ChemEngineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dunya, Hamza</au><au>Ashuri, Maziar</au><au>Alramahi, Dana</au><au>Yue, Zheng</au><au>Kucuk, Kamil</au><au>Segre, Carlo U.</au><au>Mandal, Braja K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MnO2-Coated Dual Core–Shell Spindle-Like Nanorods for Improved Capacity Retention of Lithium–Sulfur Batteries</atitle><jtitle>ChemEngineering</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>4</volume><issue>2</issue><spage>42</spage><pages>42-</pages><issn>2305-7084</issn><eissn>2305-7084</eissn><abstract>The emerging need for high-performance lithium–sulfur batteries has motivated many researchers to investigate different designs. However, the polysulfide shuttle effect, which is the result of dissolution of many intermediate polysulfides in electrolyte, has still remained unsolved. In this study, we have designed a sulfur-filled dual core–shell spindle-like nanorod structure coated with manganese oxide (S@HCNR@MnO2) to achieve a high-performance cathode for lithium–sulfur batteries. The cathode showed an initial discharge capacity of 1661 mA h g−1 with 80% retention of capacity over 70 cycles at a 0.2C rate. Furthermore, compared with the nanorods without any coating (S@HCNR), the MnO2-coated material displayed superior rate capability, cycling stability, and Coulombic efficiency. The synergistic effects of the nitrogen-doped hollow carbon host and the MnO2 second shell are responsible for the improved electrochemical performance of this nanostructure.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/chemengineering4020042</doi><orcidid>https://orcid.org/0000-0001-8610-1643</orcidid><orcidid>https://orcid.org/0000-0003-4610-983X</orcidid><orcidid>https://orcid.org/0000-0002-7356-9754</orcidid><orcidid>https://orcid.org/0000-0002-4336-0271</orcidid><orcidid>https://orcid.org/0000-0001-7664-1574</orcidid><orcidid>https://orcid.org/0000-0002-2578-2518</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2305-7084
ispartof ChemEngineering, 2020-06, Vol.4 (2), p.42
issn 2305-7084
2305-7084
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_60092f45862a42549d6df7f483f8adca
source Publicly Available Content Database
subjects Aqueous solutions
Batteries
Carbon
Cathodes
Chemical engineering
Coating
Dopamine
Efficiency
Electric vehicles
Electrochemical analysis
Electrodes
Electrolytes
Energy
Graphene
Lithium
Lithium sulfur batteries
Manganese dioxide
manganese oxide
MnO2 shell
Nanorods
Nitrogen
polysulfide shuttle
Polysulfides
scalable synthesis
sulfur
Sulfur content
title MnO2-Coated Dual Core–Shell Spindle-Like Nanorods for Improved Capacity Retention of Lithium–Sulfur Batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A34%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MnO2-Coated%20Dual%20Core%E2%80%93Shell%20Spindle-Like%20Nanorods%20for%20Improved%20Capacity%20Retention%20of%20Lithium%E2%80%93Sulfur%20Batteries&rft.jtitle=ChemEngineering&rft.au=Dunya,%20Hamza&rft.date=2020-06-01&rft.volume=4&rft.issue=2&rft.spage=42&rft.pages=42-&rft.issn=2305-7084&rft.eissn=2305-7084&rft_id=info:doi/10.3390/chemengineering4020042&rft_dat=%3Cproquest_doaj_%3E2416648576%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-fba1cbdec6e3d0b4594169980addaa2e2719032797adfbc2ca97505f23848b3d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2416648576&rft_id=info:pmid/&rfr_iscdi=true