Loading…
Unveiling the charge density wave mechanism in vanadium-based Bi-layered kagome metals
The charge density wave (CDW), as a hallmark of vanadium-based kagome superconductor AV 3 Sb 5 (A = K, Rb, Cs), has attracted intensive attention. However, the fundamental controversy regarding the underlying mechanism of CDW therein persists. Recently, the vanadium-based bi-layered kagome metal ScV...
Saved in:
Published in: | NPG Asia materials 2024-09, Vol.16 (1), p.46-9, Article 46 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c310t-4f14532109d938690d9289a7b844e01b6d3cff749e3bd075e05454eba30e89a13 |
container_end_page | 9 |
container_issue | 1 |
container_start_page | 46 |
container_title | NPG Asia materials |
container_volume | 16 |
creator | Yang, Yi-Chen Cho, Soohyun Li, Tong-Rui Liu, Xiang-Qi Liu, Zheng-Tai Jiang, Zhi-Cheng Ding, Jian-Yang Xia, Wei Tao, Zi-Cheng Liu, Jia-Yu Jing, Wen-Chuan Huang, Yu Shi, Yu-Ming Huh, Soonsang Kondo, Takeshi Sun, Zhe Liu, Ji-Shan Ye, Mao Wang, Yi-Lin Guo, Yan-Feng Shen, Da-Wei |
description | The charge density wave (CDW), as a hallmark of vanadium-based kagome superconductor AV
3
Sb
5
(A = K, Rb, Cs), has attracted intensive attention. However, the fundamental controversy regarding the underlying mechanism of CDW therein persists. Recently, the vanadium-based bi-layered kagome metal ScV
6
Sn
6
, reported to exhibit a long-range charge order below 94 K, has emerged as a promising candidate to further clarify this core issue. Here, employing micro-focusing angle-resolved photoemission spectroscopy (μ-ARPES) and first-principles calculations, we systematically studied the unique CDW order in vanadium-based bi-layered kagome metals by comparing ScV
6
Sn
6
with its isostructural counterpart YV
6
Sn
6
, which lacks a CDW ground state. Combining ARPES data and the corresponding joint density of states (DOS), we suggest that the VHS nesting mechanism might be invalid in these materials. Besides, in ScV
6
Sn
6
, we identified multiple hybridization energy gaps resulting from CDW-induced band folding, along with an anomalous band dispersion, implying a potential electron-phonon coupling-driven mechanism underlying the formation of the CDW order. Our finding not only comprehensively maps the electronic structure of V-based bi-layer kagome metals but also provides constructive experimental evidence for the unique origin of CDW in this system.
We investigated the origins of charge density wave (CDW) mechanisms in the bi-layered kagome metal ScV
6
Sn
6
by comparing its electronic structure with that of its isostructural counterpart YV
6
Sn
6
, which does not exhibit a CDW state. Our ARPES measurements reveal that the Van Hove singularity (VHS) nesting mechanism may not be valid in the CDW state. In ScV
6
Sn
6
, the electronic structure shows a CDW-induced band gap accompanied by anomalous band dispersion near the M point of the Brillouin zone. These findings provide experimental evidence for the origin of CDW in vanadium-based kagome metals. |
doi_str_mv | 10.1038/s41427-024-00567-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_600dbf0d966d4010abf9436fb3876513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_600dbf0d966d4010abf9436fb3876513</doaj_id><sourcerecordid>3106862923</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-4f14532109d938690d9289a7b844e01b6d3cff749e3bd075e05454eba30e89a13</originalsourceid><addsrcrecordid>eNp9kc1OwzAQhCMEElXpC3CKxNmwjh3HOULFT6VKXChXy4k3qUuTFDst6tvjEAScOO1q9c3sSBNFlxSuKTB54znlSUYg4QQgFRlhJ9GESskJhzQ7_bOfRzPvNwBAheAy5ZPoddUe0G5tW8f9GuNyrV2NscHW2_4Yf-gDxg2Ga2t9E9s2PuhWG7tvSKE9mvjOkq0-ogvrm667ZqB7vfUX0VkVBs6-5zRaPdy_zJ_I8vlxMb9dkpJR6AmvKE9ZQiE3OZMiB5MnMtdZITlHoIUwrKyqjOfICgNZipDylGOhGWDgKJtGi9HXdHqjds422h1Vp636OnSuVtr1ttyiEgCmqMIHIQwHCrqocs5EVTCZiZSy4HU1eu1c975H36tNt3dtiK9CWCFFkicDlYxU6TrvHVY_XymooQ411qFCHeqrDjWI2CjyAW5rdL_W_6g-AaRmi1s</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3106862923</pqid></control><display><type>article</type><title>Unveiling the charge density wave mechanism in vanadium-based Bi-layered kagome metals</title><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><source>Publicly Available Content (ProQuest)</source><source>Free Full-Text Journals in Chemistry</source><creator>Yang, Yi-Chen ; Cho, Soohyun ; Li, Tong-Rui ; Liu, Xiang-Qi ; Liu, Zheng-Tai ; Jiang, Zhi-Cheng ; Ding, Jian-Yang ; Xia, Wei ; Tao, Zi-Cheng ; Liu, Jia-Yu ; Jing, Wen-Chuan ; Huang, Yu ; Shi, Yu-Ming ; Huh, Soonsang ; Kondo, Takeshi ; Sun, Zhe ; Liu, Ji-Shan ; Ye, Mao ; Wang, Yi-Lin ; Guo, Yan-Feng ; Shen, Da-Wei</creator><creatorcontrib>Yang, Yi-Chen ; Cho, Soohyun ; Li, Tong-Rui ; Liu, Xiang-Qi ; Liu, Zheng-Tai ; Jiang, Zhi-Cheng ; Ding, Jian-Yang ; Xia, Wei ; Tao, Zi-Cheng ; Liu, Jia-Yu ; Jing, Wen-Chuan ; Huang, Yu ; Shi, Yu-Ming ; Huh, Soonsang ; Kondo, Takeshi ; Sun, Zhe ; Liu, Ji-Shan ; Ye, Mao ; Wang, Yi-Lin ; Guo, Yan-Feng ; Shen, Da-Wei</creatorcontrib><description>The charge density wave (CDW), as a hallmark of vanadium-based kagome superconductor AV
3
Sb
5
(A = K, Rb, Cs), has attracted intensive attention. However, the fundamental controversy regarding the underlying mechanism of CDW therein persists. Recently, the vanadium-based bi-layered kagome metal ScV
6
Sn
6
, reported to exhibit a long-range charge order below 94 K, has emerged as a promising candidate to further clarify this core issue. Here, employing micro-focusing angle-resolved photoemission spectroscopy (μ-ARPES) and first-principles calculations, we systematically studied the unique CDW order in vanadium-based bi-layered kagome metals by comparing ScV
6
Sn
6
with its isostructural counterpart YV
6
Sn
6
, which lacks a CDW ground state. Combining ARPES data and the corresponding joint density of states (DOS), we suggest that the VHS nesting mechanism might be invalid in these materials. Besides, in ScV
6
Sn
6
, we identified multiple hybridization energy gaps resulting from CDW-induced band folding, along with an anomalous band dispersion, implying a potential electron-phonon coupling-driven mechanism underlying the formation of the CDW order. Our finding not only comprehensively maps the electronic structure of V-based bi-layer kagome metals but also provides constructive experimental evidence for the unique origin of CDW in this system.
We investigated the origins of charge density wave (CDW) mechanisms in the bi-layered kagome metal ScV
6
Sn
6
by comparing its electronic structure with that of its isostructural counterpart YV
6
Sn
6
, which does not exhibit a CDW state. Our ARPES measurements reveal that the Van Hove singularity (VHS) nesting mechanism may not be valid in the CDW state. In ScV
6
Sn
6
, the electronic structure shows a CDW-induced band gap accompanied by anomalous band dispersion near the M point of the Brillouin zone. These findings provide experimental evidence for the origin of CDW in vanadium-based kagome metals.</description><identifier>ISSN: 1884-4057</identifier><identifier>ISSN: 1884-4049</identifier><identifier>EISSN: 1884-4057</identifier><identifier>DOI: 10.1038/s41427-024-00567-3</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>119/118 ; 140/146 ; 639/301/119/995 ; 639/766/119/995 ; Biomaterials ; Brillouin zones ; Charge density waves ; Chemistry and Materials Science ; Density of states ; Electronic structure ; Energy gap ; Energy Systems ; First principles ; Materials Science ; Metals ; Microfocusing ; Nesting ; Optical and Electronic Materials ; Photoelectric emission ; Structural Materials ; Surface and Interface Science ; Thin Films ; Vanadium</subject><ispartof>NPG Asia materials, 2024-09, Vol.16 (1), p.46-9, Article 46</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c310t-4f14532109d938690d9289a7b844e01b6d3cff749e3bd075e05454eba30e89a13</cites><orcidid>0000-0002-3328-165X ; 0000-0002-5555-425X ; 0000-0002-9386-4857 ; 0009-0002-4214-2018 ; 0000-0003-2402-7956 ; 0000-0002-3386-5380 ; 0009-0003-2267-9966</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3106862923/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3106862923?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Yang, Yi-Chen</creatorcontrib><creatorcontrib>Cho, Soohyun</creatorcontrib><creatorcontrib>Li, Tong-Rui</creatorcontrib><creatorcontrib>Liu, Xiang-Qi</creatorcontrib><creatorcontrib>Liu, Zheng-Tai</creatorcontrib><creatorcontrib>Jiang, Zhi-Cheng</creatorcontrib><creatorcontrib>Ding, Jian-Yang</creatorcontrib><creatorcontrib>Xia, Wei</creatorcontrib><creatorcontrib>Tao, Zi-Cheng</creatorcontrib><creatorcontrib>Liu, Jia-Yu</creatorcontrib><creatorcontrib>Jing, Wen-Chuan</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Shi, Yu-Ming</creatorcontrib><creatorcontrib>Huh, Soonsang</creatorcontrib><creatorcontrib>Kondo, Takeshi</creatorcontrib><creatorcontrib>Sun, Zhe</creatorcontrib><creatorcontrib>Liu, Ji-Shan</creatorcontrib><creatorcontrib>Ye, Mao</creatorcontrib><creatorcontrib>Wang, Yi-Lin</creatorcontrib><creatorcontrib>Guo, Yan-Feng</creatorcontrib><creatorcontrib>Shen, Da-Wei</creatorcontrib><title>Unveiling the charge density wave mechanism in vanadium-based Bi-layered kagome metals</title><title>NPG Asia materials</title><addtitle>NPG Asia Mater</addtitle><description>The charge density wave (CDW), as a hallmark of vanadium-based kagome superconductor AV
3
Sb
5
(A = K, Rb, Cs), has attracted intensive attention. However, the fundamental controversy regarding the underlying mechanism of CDW therein persists. Recently, the vanadium-based bi-layered kagome metal ScV
6
Sn
6
, reported to exhibit a long-range charge order below 94 K, has emerged as a promising candidate to further clarify this core issue. Here, employing micro-focusing angle-resolved photoemission spectroscopy (μ-ARPES) and first-principles calculations, we systematically studied the unique CDW order in vanadium-based bi-layered kagome metals by comparing ScV
6
Sn
6
with its isostructural counterpart YV
6
Sn
6
, which lacks a CDW ground state. Combining ARPES data and the corresponding joint density of states (DOS), we suggest that the VHS nesting mechanism might be invalid in these materials. Besides, in ScV
6
Sn
6
, we identified multiple hybridization energy gaps resulting from CDW-induced band folding, along with an anomalous band dispersion, implying a potential electron-phonon coupling-driven mechanism underlying the formation of the CDW order. Our finding not only comprehensively maps the electronic structure of V-based bi-layer kagome metals but also provides constructive experimental evidence for the unique origin of CDW in this system.
We investigated the origins of charge density wave (CDW) mechanisms in the bi-layered kagome metal ScV
6
Sn
6
by comparing its electronic structure with that of its isostructural counterpart YV
6
Sn
6
, which does not exhibit a CDW state. Our ARPES measurements reveal that the Van Hove singularity (VHS) nesting mechanism may not be valid in the CDW state. In ScV
6
Sn
6
, the electronic structure shows a CDW-induced band gap accompanied by anomalous band dispersion near the M point of the Brillouin zone. These findings provide experimental evidence for the origin of CDW in vanadium-based kagome metals.</description><subject>119/118</subject><subject>140/146</subject><subject>639/301/119/995</subject><subject>639/766/119/995</subject><subject>Biomaterials</subject><subject>Brillouin zones</subject><subject>Charge density waves</subject><subject>Chemistry and Materials Science</subject><subject>Density of states</subject><subject>Electronic structure</subject><subject>Energy gap</subject><subject>Energy Systems</subject><subject>First principles</subject><subject>Materials Science</subject><subject>Metals</subject><subject>Microfocusing</subject><subject>Nesting</subject><subject>Optical and Electronic Materials</subject><subject>Photoelectric emission</subject><subject>Structural Materials</subject><subject>Surface and Interface Science</subject><subject>Thin Films</subject><subject>Vanadium</subject><issn>1884-4057</issn><issn>1884-4049</issn><issn>1884-4057</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc1OwzAQhCMEElXpC3CKxNmwjh3HOULFT6VKXChXy4k3qUuTFDst6tvjEAScOO1q9c3sSBNFlxSuKTB54znlSUYg4QQgFRlhJ9GESskJhzQ7_bOfRzPvNwBAheAy5ZPoddUe0G5tW8f9GuNyrV2NscHW2_4Yf-gDxg2Ga2t9E9s2PuhWG7tvSKE9mvjOkq0-ogvrm667ZqB7vfUX0VkVBs6-5zRaPdy_zJ_I8vlxMb9dkpJR6AmvKE9ZQiE3OZMiB5MnMtdZITlHoIUwrKyqjOfICgNZipDylGOhGWDgKJtGi9HXdHqjds422h1Vp636OnSuVtr1ttyiEgCmqMIHIQwHCrqocs5EVTCZiZSy4HU1eu1c975H36tNt3dtiK9CWCFFkicDlYxU6TrvHVY_XymooQ411qFCHeqrDjWI2CjyAW5rdL_W_6g-AaRmi1s</recordid><startdate>20240920</startdate><enddate>20240920</enddate><creator>Yang, Yi-Chen</creator><creator>Cho, Soohyun</creator><creator>Li, Tong-Rui</creator><creator>Liu, Xiang-Qi</creator><creator>Liu, Zheng-Tai</creator><creator>Jiang, Zhi-Cheng</creator><creator>Ding, Jian-Yang</creator><creator>Xia, Wei</creator><creator>Tao, Zi-Cheng</creator><creator>Liu, Jia-Yu</creator><creator>Jing, Wen-Chuan</creator><creator>Huang, Yu</creator><creator>Shi, Yu-Ming</creator><creator>Huh, Soonsang</creator><creator>Kondo, Takeshi</creator><creator>Sun, Zhe</creator><creator>Liu, Ji-Shan</creator><creator>Ye, Mao</creator><creator>Wang, Yi-Lin</creator><creator>Guo, Yan-Feng</creator><creator>Shen, Da-Wei</creator><general>Springer Japan</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3328-165X</orcidid><orcidid>https://orcid.org/0000-0002-5555-425X</orcidid><orcidid>https://orcid.org/0000-0002-9386-4857</orcidid><orcidid>https://orcid.org/0009-0002-4214-2018</orcidid><orcidid>https://orcid.org/0000-0003-2402-7956</orcidid><orcidid>https://orcid.org/0000-0002-3386-5380</orcidid><orcidid>https://orcid.org/0009-0003-2267-9966</orcidid></search><sort><creationdate>20240920</creationdate><title>Unveiling the charge density wave mechanism in vanadium-based Bi-layered kagome metals</title><author>Yang, Yi-Chen ; Cho, Soohyun ; Li, Tong-Rui ; Liu, Xiang-Qi ; Liu, Zheng-Tai ; Jiang, Zhi-Cheng ; Ding, Jian-Yang ; Xia, Wei ; Tao, Zi-Cheng ; Liu, Jia-Yu ; Jing, Wen-Chuan ; Huang, Yu ; Shi, Yu-Ming ; Huh, Soonsang ; Kondo, Takeshi ; Sun, Zhe ; Liu, Ji-Shan ; Ye, Mao ; Wang, Yi-Lin ; Guo, Yan-Feng ; Shen, Da-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-4f14532109d938690d9289a7b844e01b6d3cff749e3bd075e05454eba30e89a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>119/118</topic><topic>140/146</topic><topic>639/301/119/995</topic><topic>639/766/119/995</topic><topic>Biomaterials</topic><topic>Brillouin zones</topic><topic>Charge density waves</topic><topic>Chemistry and Materials Science</topic><topic>Density of states</topic><topic>Electronic structure</topic><topic>Energy gap</topic><topic>Energy Systems</topic><topic>First principles</topic><topic>Materials Science</topic><topic>Metals</topic><topic>Microfocusing</topic><topic>Nesting</topic><topic>Optical and Electronic Materials</topic><topic>Photoelectric emission</topic><topic>Structural Materials</topic><topic>Surface and Interface Science</topic><topic>Thin Films</topic><topic>Vanadium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yi-Chen</creatorcontrib><creatorcontrib>Cho, Soohyun</creatorcontrib><creatorcontrib>Li, Tong-Rui</creatorcontrib><creatorcontrib>Liu, Xiang-Qi</creatorcontrib><creatorcontrib>Liu, Zheng-Tai</creatorcontrib><creatorcontrib>Jiang, Zhi-Cheng</creatorcontrib><creatorcontrib>Ding, Jian-Yang</creatorcontrib><creatorcontrib>Xia, Wei</creatorcontrib><creatorcontrib>Tao, Zi-Cheng</creatorcontrib><creatorcontrib>Liu, Jia-Yu</creatorcontrib><creatorcontrib>Jing, Wen-Chuan</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Shi, Yu-Ming</creatorcontrib><creatorcontrib>Huh, Soonsang</creatorcontrib><creatorcontrib>Kondo, Takeshi</creatorcontrib><creatorcontrib>Sun, Zhe</creatorcontrib><creatorcontrib>Liu, Ji-Shan</creatorcontrib><creatorcontrib>Ye, Mao</creatorcontrib><creatorcontrib>Wang, Yi-Lin</creatorcontrib><creatorcontrib>Guo, Yan-Feng</creatorcontrib><creatorcontrib>Shen, Da-Wei</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>NPG Asia materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yi-Chen</au><au>Cho, Soohyun</au><au>Li, Tong-Rui</au><au>Liu, Xiang-Qi</au><au>Liu, Zheng-Tai</au><au>Jiang, Zhi-Cheng</au><au>Ding, Jian-Yang</au><au>Xia, Wei</au><au>Tao, Zi-Cheng</au><au>Liu, Jia-Yu</au><au>Jing, Wen-Chuan</au><au>Huang, Yu</au><au>Shi, Yu-Ming</au><au>Huh, Soonsang</au><au>Kondo, Takeshi</au><au>Sun, Zhe</au><au>Liu, Ji-Shan</au><au>Ye, Mao</au><au>Wang, Yi-Lin</au><au>Guo, Yan-Feng</au><au>Shen, Da-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unveiling the charge density wave mechanism in vanadium-based Bi-layered kagome metals</atitle><jtitle>NPG Asia materials</jtitle><stitle>NPG Asia Mater</stitle><date>2024-09-20</date><risdate>2024</risdate><volume>16</volume><issue>1</issue><spage>46</spage><epage>9</epage><pages>46-9</pages><artnum>46</artnum><issn>1884-4057</issn><issn>1884-4049</issn><eissn>1884-4057</eissn><abstract>The charge density wave (CDW), as a hallmark of vanadium-based kagome superconductor AV
3
Sb
5
(A = K, Rb, Cs), has attracted intensive attention. However, the fundamental controversy regarding the underlying mechanism of CDW therein persists. Recently, the vanadium-based bi-layered kagome metal ScV
6
Sn
6
, reported to exhibit a long-range charge order below 94 K, has emerged as a promising candidate to further clarify this core issue. Here, employing micro-focusing angle-resolved photoemission spectroscopy (μ-ARPES) and first-principles calculations, we systematically studied the unique CDW order in vanadium-based bi-layered kagome metals by comparing ScV
6
Sn
6
with its isostructural counterpart YV
6
Sn
6
, which lacks a CDW ground state. Combining ARPES data and the corresponding joint density of states (DOS), we suggest that the VHS nesting mechanism might be invalid in these materials. Besides, in ScV
6
Sn
6
, we identified multiple hybridization energy gaps resulting from CDW-induced band folding, along with an anomalous band dispersion, implying a potential electron-phonon coupling-driven mechanism underlying the formation of the CDW order. Our finding not only comprehensively maps the electronic structure of V-based bi-layer kagome metals but also provides constructive experimental evidence for the unique origin of CDW in this system.
We investigated the origins of charge density wave (CDW) mechanisms in the bi-layered kagome metal ScV
6
Sn
6
by comparing its electronic structure with that of its isostructural counterpart YV
6
Sn
6
, which does not exhibit a CDW state. Our ARPES measurements reveal that the Van Hove singularity (VHS) nesting mechanism may not be valid in the CDW state. In ScV
6
Sn
6
, the electronic structure shows a CDW-induced band gap accompanied by anomalous band dispersion near the M point of the Brillouin zone. These findings provide experimental evidence for the origin of CDW in vanadium-based kagome metals.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1038/s41427-024-00567-3</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3328-165X</orcidid><orcidid>https://orcid.org/0000-0002-5555-425X</orcidid><orcidid>https://orcid.org/0000-0002-9386-4857</orcidid><orcidid>https://orcid.org/0009-0002-4214-2018</orcidid><orcidid>https://orcid.org/0000-0003-2402-7956</orcidid><orcidid>https://orcid.org/0000-0002-3386-5380</orcidid><orcidid>https://orcid.org/0009-0003-2267-9966</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1884-4057 |
ispartof | NPG Asia materials, 2024-09, Vol.16 (1), p.46-9, Article 46 |
issn | 1884-4057 1884-4049 1884-4057 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_600dbf0d966d4010abf9436fb3876513 |
source | Springer Nature - SpringerLink Journals - Fully Open Access ; Publicly Available Content (ProQuest); Free Full-Text Journals in Chemistry |
subjects | 119/118 140/146 639/301/119/995 639/766/119/995 Biomaterials Brillouin zones Charge density waves Chemistry and Materials Science Density of states Electronic structure Energy gap Energy Systems First principles Materials Science Metals Microfocusing Nesting Optical and Electronic Materials Photoelectric emission Structural Materials Surface and Interface Science Thin Films Vanadium |
title | Unveiling the charge density wave mechanism in vanadium-based Bi-layered kagome metals |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A25%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unveiling%20the%20charge%20density%20wave%20mechanism%20in%20vanadium-based%20Bi-layered%20kagome%20metals&rft.jtitle=NPG%20Asia%20materials&rft.au=Yang,%20Yi-Chen&rft.date=2024-09-20&rft.volume=16&rft.issue=1&rft.spage=46&rft.epage=9&rft.pages=46-9&rft.artnum=46&rft.issn=1884-4057&rft.eissn=1884-4057&rft_id=info:doi/10.1038/s41427-024-00567-3&rft_dat=%3Cproquest_doaj_%3E3106862923%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c310t-4f14532109d938690d9289a7b844e01b6d3cff749e3bd075e05454eba30e89a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3106862923&rft_id=info:pmid/&rfr_iscdi=true |