Loading…
Carbon Dioxide Storage Potential of Cenozoic Saline Aquifers in the South Yellow Sea Basin
Carbon dioxide (CO2) storage in underwater reservoirs is a valuable method of reducing carbon emissions. Saline aquifers such as those in the South Yellow Sea Basin (SYSB), China, have great potential for geological CO2 storage. Thus, we use the recommended calculation method of USDOE and a formatio...
Saved in:
Published in: | Energies (Basel) 2023-02, Vol.16 (4), p.1578 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Carbon dioxide (CO2) storage in underwater reservoirs is a valuable method of reducing carbon emissions. Saline aquifers such as those in the South Yellow Sea Basin (SYSB), China, have great potential for geological CO2 storage. Thus, we use the recommended calculation method of USDOE and a formation volume model to determine the geological conditions for CO2 storage and estimate the CO2 storage capacity of the Cenozoic saline aquifers in the SYSB (depth: 800–3200 m). Overall, the SYSB exhibits weak fault activity and seismicity, medium and low geothermal fields, four types of source sandstone reservoir, and four sets of carbon reservoir–caprock assemblages developed from the Cenozoic strata, providing relatively good geological conditions for CO2 storage. The estimated capacity of the Cenozoic strata ranges from 39.59 Gt to 426.94 Gt (average: 155.25 Gt), indicating an extensive storage capacity that can meet the carbon sequestration needs of Shandong and Jiangsu Provinces for approximately 89 years. The Yantai Depression has a lower geothermal gradient and terrestrial heat, weaker seismic activity, and double the storage capacity of the Qingdao Depression, indicating that it is the most suitable area for Cenozoic CO2 storage in the SYSB, whereas the Laoshan Uplift is not suitable for storage. This study provides a scientific basis for the selection of offshore CO2 storage sites. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en16041578 |