Loading…
Increasing Performance of Spiral-Wound Modules (SWMs) by Improving Stability against Axial Pressure Drop and Utilising Pulsed Flow
Spacer-induced flow shadows and limited mechanical stability due to module construction and geometry are the main obstacles to improving the filtration performance and cleanability of microfiltration spiral-wound membranes (SWMs), applied to milk protein fractionation in this study. The goal of this...
Saved in:
Published in: | Membranes (Basel) 2023-09, Vol.13 (9), p.791 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c510t-48e5332abf60cdd0e9331f06f06d8ff51bc904c212826013d348b6f8818f7f9a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c510t-48e5332abf60cdd0e9331f06f06d8ff51bc904c212826013d348b6f8818f7f9a3 |
container_end_page | |
container_issue | 9 |
container_start_page | 791 |
container_title | Membranes (Basel) |
container_volume | 13 |
creator | Kürzl, Christian Hartinger, Martin Ong, Patrick Schopf, Roland Schiffer, Simon Kulozik, Ulrich |
description | Spacer-induced flow shadows and limited mechanical stability due to module construction and geometry are the main obstacles to improving the filtration performance and cleanability of microfiltration spiral-wound membranes (SWMs), applied to milk protein fractionation in this study. The goal of this study was first to improve filtration performance and cleanability by utilising pulsed flow in a modified pilot-scale filtration plant. The second goal was to enhance membrane stability against module deformation by flow-induced friction in the axial direction (“membrane telescoping”). This was accomplished by stabilising membrane layers, including spacers, at the membrane inlet by glue connections. Pulsed flow characteristics similar to those reported in previous lab-scale studies could be achieved by establishing an on/off bypass around the membrane module, thus enabling a high-frequency flow variation. Pulsed flow significantly increased filtration performance (target protein mass flow into the permeate increased by 26%) and cleaning success (protein removal increased by 28%). Furthermore, adding feed-side glue connections increased the mechanical membrane stability in terms of allowed volume throughput by ≥100% compared to unmodified modules, thus allowing operation with higher axial pressure drops, flow velocities and pulsation amplitudes. |
doi_str_mv | 10.3390/membranes13090791 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_60282c35229344f09e66ed7734220047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A771805125</galeid><doaj_id>oai_doaj_org_article_60282c35229344f09e66ed7734220047</doaj_id><sourcerecordid>A771805125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-48e5332abf60cdd0e9331f06f06d8ff51bc904c212826013d348b6f8818f7f9a3</originalsourceid><addsrcrecordid>eNplkl1vFCEUhidGY5vaH-AdiTf1YusBho-5Mk21ukkbm6xNLwnDx8pmBlaYqe6tv1zabYxVIAEO73kOHE7TvMZwSmkH70Y39llHVzCFDkSHnzWHBIRYABXs-V_rg-a4lA3UxoFxCi-bAyoEYwTTw-bXMprsdAlxja5d9imPOhqHkkerbch6WNymOVp0lew8uIJOVrdX5S3qd2g5bnO6u_dbTboPQ5h2SK91iGVCZz-DHtB1dqXM2aEPOW2RrpSbqer2seahOIsuhvTjVfPC67o7fpyPmpuLj1_PPy8uv3xanp9dLgzDMC1a6RilRPeeg7EWXEcp9sDrsNJ7hnvTQWsIJpJwwNTSVvbcS4mlF77T9KhZ7rk26Y3a5jDqvFNJB_VgSHmtdJ6CGZziUCGGMkI62rYeOse5s0LQlhCAVlTW-z1rO_ejs8bFqebqCfTpSQzf1DrdKQyMMtlBJZw8EnL6PrsyqTEU44ahfmmaiyKSdxxz4LRK3_wj3aQ5x5qrB1WLASSuqtO9aq3rC0L0qQY2tVs3BpOi86Haz4TAEhgmrDrgvYPJqZTs_J_rY1D3Jab-KzH6G-IRw7Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869410081</pqid></control><display><type>article</type><title>Increasing Performance of Spiral-Wound Modules (SWMs) by Improving Stability against Axial Pressure Drop and Utilising Pulsed Flow</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Kürzl, Christian ; Hartinger, Martin ; Ong, Patrick ; Schopf, Roland ; Schiffer, Simon ; Kulozik, Ulrich</creator><creatorcontrib>Kürzl, Christian ; Hartinger, Martin ; Ong, Patrick ; Schopf, Roland ; Schiffer, Simon ; Kulozik, Ulrich</creatorcontrib><description>Spacer-induced flow shadows and limited mechanical stability due to module construction and geometry are the main obstacles to improving the filtration performance and cleanability of microfiltration spiral-wound membranes (SWMs), applied to milk protein fractionation in this study. The goal of this study was first to improve filtration performance and cleanability by utilising pulsed flow in a modified pilot-scale filtration plant. The second goal was to enhance membrane stability against module deformation by flow-induced friction in the axial direction (“membrane telescoping”). This was accomplished by stabilising membrane layers, including spacers, at the membrane inlet by glue connections. Pulsed flow characteristics similar to those reported in previous lab-scale studies could be achieved by establishing an on/off bypass around the membrane module, thus enabling a high-frequency flow variation. Pulsed flow significantly increased filtration performance (target protein mass flow into the permeate increased by 26%) and cleaning success (protein removal increased by 28%). Furthermore, adding feed-side glue connections increased the mechanical membrane stability in terms of allowed volume throughput by ≥100% compared to unmodified modules, thus allowing operation with higher axial pressure drops, flow velocities and pulsation amplitudes.</description><identifier>ISSN: 2077-0375</identifier><identifier>EISSN: 2077-0375</identifier><identifier>DOI: 10.3390/membranes13090791</identifier><identifier>PMID: 37755213</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>axial pressure loss ; Efficiency ; Filtration ; Flow characteristics ; Flow stability ; Flow velocity ; Fractionation ; Frequency variation ; Friction ; Mass flow ; membrane performance ; Membranes ; Microfiltration ; Milk ; Milk proteins ; module stability ; Osmosis ; Packaging ; Pressure drop ; Proteins ; pulsed flow ; Spiral wound modules ; Telescoping</subject><ispartof>Membranes (Basel), 2023-09, Vol.13 (9), p.791</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-48e5332abf60cdd0e9331f06f06d8ff51bc904c212826013d348b6f8818f7f9a3</citedby><cites>FETCH-LOGICAL-c510t-48e5332abf60cdd0e9331f06f06d8ff51bc904c212826013d348b6f8818f7f9a3</cites><orcidid>0000-0001-9598-9242 ; 0000-0002-3070-5074 ; 0000-0002-5336-8314</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2869410081/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2869410081?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids></links><search><creatorcontrib>Kürzl, Christian</creatorcontrib><creatorcontrib>Hartinger, Martin</creatorcontrib><creatorcontrib>Ong, Patrick</creatorcontrib><creatorcontrib>Schopf, Roland</creatorcontrib><creatorcontrib>Schiffer, Simon</creatorcontrib><creatorcontrib>Kulozik, Ulrich</creatorcontrib><title>Increasing Performance of Spiral-Wound Modules (SWMs) by Improving Stability against Axial Pressure Drop and Utilising Pulsed Flow</title><title>Membranes (Basel)</title><description>Spacer-induced flow shadows and limited mechanical stability due to module construction and geometry are the main obstacles to improving the filtration performance and cleanability of microfiltration spiral-wound membranes (SWMs), applied to milk protein fractionation in this study. The goal of this study was first to improve filtration performance and cleanability by utilising pulsed flow in a modified pilot-scale filtration plant. The second goal was to enhance membrane stability against module deformation by flow-induced friction in the axial direction (“membrane telescoping”). This was accomplished by stabilising membrane layers, including spacers, at the membrane inlet by glue connections. Pulsed flow characteristics similar to those reported in previous lab-scale studies could be achieved by establishing an on/off bypass around the membrane module, thus enabling a high-frequency flow variation. Pulsed flow significantly increased filtration performance (target protein mass flow into the permeate increased by 26%) and cleaning success (protein removal increased by 28%). Furthermore, adding feed-side glue connections increased the mechanical membrane stability in terms of allowed volume throughput by ≥100% compared to unmodified modules, thus allowing operation with higher axial pressure drops, flow velocities and pulsation amplitudes.</description><subject>axial pressure loss</subject><subject>Efficiency</subject><subject>Filtration</subject><subject>Flow characteristics</subject><subject>Flow stability</subject><subject>Flow velocity</subject><subject>Fractionation</subject><subject>Frequency variation</subject><subject>Friction</subject><subject>Mass flow</subject><subject>membrane performance</subject><subject>Membranes</subject><subject>Microfiltration</subject><subject>Milk</subject><subject>Milk proteins</subject><subject>module stability</subject><subject>Osmosis</subject><subject>Packaging</subject><subject>Pressure drop</subject><subject>Proteins</subject><subject>pulsed flow</subject><subject>Spiral wound modules</subject><subject>Telescoping</subject><issn>2077-0375</issn><issn>2077-0375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplkl1vFCEUhidGY5vaH-AdiTf1YusBho-5Mk21ukkbm6xNLwnDx8pmBlaYqe6tv1zabYxVIAEO73kOHE7TvMZwSmkH70Y39llHVzCFDkSHnzWHBIRYABXs-V_rg-a4lA3UxoFxCi-bAyoEYwTTw-bXMprsdAlxja5d9imPOhqHkkerbch6WNymOVp0lew8uIJOVrdX5S3qd2g5bnO6u_dbTboPQ5h2SK91iGVCZz-DHtB1dqXM2aEPOW2RrpSbqer2seahOIsuhvTjVfPC67o7fpyPmpuLj1_PPy8uv3xanp9dLgzDMC1a6RilRPeeg7EWXEcp9sDrsNJ7hnvTQWsIJpJwwNTSVvbcS4mlF77T9KhZ7rk26Y3a5jDqvFNJB_VgSHmtdJ6CGZziUCGGMkI62rYeOse5s0LQlhCAVlTW-z1rO_ejs8bFqebqCfTpSQzf1DrdKQyMMtlBJZw8EnL6PrsyqTEU44ahfmmaiyKSdxxz4LRK3_wj3aQ5x5qrB1WLASSuqtO9aq3rC0L0qQY2tVs3BpOi86Haz4TAEhgmrDrgvYPJqZTs_J_rY1D3Jab-KzH6G-IRw7Q</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Kürzl, Christian</creator><creator>Hartinger, Martin</creator><creator>Ong, Patrick</creator><creator>Schopf, Roland</creator><creator>Schiffer, Simon</creator><creator>Kulozik, Ulrich</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9598-9242</orcidid><orcidid>https://orcid.org/0000-0002-3070-5074</orcidid><orcidid>https://orcid.org/0000-0002-5336-8314</orcidid></search><sort><creationdate>20230901</creationdate><title>Increasing Performance of Spiral-Wound Modules (SWMs) by Improving Stability against Axial Pressure Drop and Utilising Pulsed Flow</title><author>Kürzl, Christian ; Hartinger, Martin ; Ong, Patrick ; Schopf, Roland ; Schiffer, Simon ; Kulozik, Ulrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-48e5332abf60cdd0e9331f06f06d8ff51bc904c212826013d348b6f8818f7f9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>axial pressure loss</topic><topic>Efficiency</topic><topic>Filtration</topic><topic>Flow characteristics</topic><topic>Flow stability</topic><topic>Flow velocity</topic><topic>Fractionation</topic><topic>Frequency variation</topic><topic>Friction</topic><topic>Mass flow</topic><topic>membrane performance</topic><topic>Membranes</topic><topic>Microfiltration</topic><topic>Milk</topic><topic>Milk proteins</topic><topic>module stability</topic><topic>Osmosis</topic><topic>Packaging</topic><topic>Pressure drop</topic><topic>Proteins</topic><topic>pulsed flow</topic><topic>Spiral wound modules</topic><topic>Telescoping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kürzl, Christian</creatorcontrib><creatorcontrib>Hartinger, Martin</creatorcontrib><creatorcontrib>Ong, Patrick</creatorcontrib><creatorcontrib>Schopf, Roland</creatorcontrib><creatorcontrib>Schiffer, Simon</creatorcontrib><creatorcontrib>Kulozik, Ulrich</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Membranes (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kürzl, Christian</au><au>Hartinger, Martin</au><au>Ong, Patrick</au><au>Schopf, Roland</au><au>Schiffer, Simon</au><au>Kulozik, Ulrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Increasing Performance of Spiral-Wound Modules (SWMs) by Improving Stability against Axial Pressure Drop and Utilising Pulsed Flow</atitle><jtitle>Membranes (Basel)</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>13</volume><issue>9</issue><spage>791</spage><pages>791-</pages><issn>2077-0375</issn><eissn>2077-0375</eissn><abstract>Spacer-induced flow shadows and limited mechanical stability due to module construction and geometry are the main obstacles to improving the filtration performance and cleanability of microfiltration spiral-wound membranes (SWMs), applied to milk protein fractionation in this study. The goal of this study was first to improve filtration performance and cleanability by utilising pulsed flow in a modified pilot-scale filtration plant. The second goal was to enhance membrane stability against module deformation by flow-induced friction in the axial direction (“membrane telescoping”). This was accomplished by stabilising membrane layers, including spacers, at the membrane inlet by glue connections. Pulsed flow characteristics similar to those reported in previous lab-scale studies could be achieved by establishing an on/off bypass around the membrane module, thus enabling a high-frequency flow variation. Pulsed flow significantly increased filtration performance (target protein mass flow into the permeate increased by 26%) and cleaning success (protein removal increased by 28%). Furthermore, adding feed-side glue connections increased the mechanical membrane stability in terms of allowed volume throughput by ≥100% compared to unmodified modules, thus allowing operation with higher axial pressure drops, flow velocities and pulsation amplitudes.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>37755213</pmid><doi>10.3390/membranes13090791</doi><orcidid>https://orcid.org/0000-0001-9598-9242</orcidid><orcidid>https://orcid.org/0000-0002-3070-5074</orcidid><orcidid>https://orcid.org/0000-0002-5336-8314</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2077-0375 |
ispartof | Membranes (Basel), 2023-09, Vol.13 (9), p.791 |
issn | 2077-0375 2077-0375 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_60282c35229344f09e66ed7734220047 |
source | Publicly Available Content Database; PubMed Central |
subjects | axial pressure loss Efficiency Filtration Flow characteristics Flow stability Flow velocity Fractionation Frequency variation Friction Mass flow membrane performance Membranes Microfiltration Milk Milk proteins module stability Osmosis Packaging Pressure drop Proteins pulsed flow Spiral wound modules Telescoping |
title | Increasing Performance of Spiral-Wound Modules (SWMs) by Improving Stability against Axial Pressure Drop and Utilising Pulsed Flow |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A40%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Increasing%20Performance%20of%20Spiral-Wound%20Modules%20(SWMs)%20by%20Improving%20Stability%20against%20Axial%20Pressure%20Drop%20and%20Utilising%20Pulsed%20Flow&rft.jtitle=Membranes%20(Basel)&rft.au=K%C3%BCrzl,%20Christian&rft.date=2023-09-01&rft.volume=13&rft.issue=9&rft.spage=791&rft.pages=791-&rft.issn=2077-0375&rft.eissn=2077-0375&rft_id=info:doi/10.3390/membranes13090791&rft_dat=%3Cgale_doaj_%3EA771805125%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c510t-48e5332abf60cdd0e9331f06f06d8ff51bc904c212826013d348b6f8818f7f9a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2869410081&rft_id=info:pmid/37755213&rft_galeid=A771805125&rfr_iscdi=true |