Loading…

Increasing Performance of Spiral-Wound Modules (SWMs) by Improving Stability against Axial Pressure Drop and Utilising Pulsed Flow

Spacer-induced flow shadows and limited mechanical stability due to module construction and geometry are the main obstacles to improving the filtration performance and cleanability of microfiltration spiral-wound membranes (SWMs), applied to milk protein fractionation in this study. The goal of this...

Full description

Saved in:
Bibliographic Details
Published in:Membranes (Basel) 2023-09, Vol.13 (9), p.791
Main Authors: Kürzl, Christian, Hartinger, Martin, Ong, Patrick, Schopf, Roland, Schiffer, Simon, Kulozik, Ulrich
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c510t-48e5332abf60cdd0e9331f06f06d8ff51bc904c212826013d348b6f8818f7f9a3
cites cdi_FETCH-LOGICAL-c510t-48e5332abf60cdd0e9331f06f06d8ff51bc904c212826013d348b6f8818f7f9a3
container_end_page
container_issue 9
container_start_page 791
container_title Membranes (Basel)
container_volume 13
creator Kürzl, Christian
Hartinger, Martin
Ong, Patrick
Schopf, Roland
Schiffer, Simon
Kulozik, Ulrich
description Spacer-induced flow shadows and limited mechanical stability due to module construction and geometry are the main obstacles to improving the filtration performance and cleanability of microfiltration spiral-wound membranes (SWMs), applied to milk protein fractionation in this study. The goal of this study was first to improve filtration performance and cleanability by utilising pulsed flow in a modified pilot-scale filtration plant. The second goal was to enhance membrane stability against module deformation by flow-induced friction in the axial direction (“membrane telescoping”). This was accomplished by stabilising membrane layers, including spacers, at the membrane inlet by glue connections. Pulsed flow characteristics similar to those reported in previous lab-scale studies could be achieved by establishing an on/off bypass around the membrane module, thus enabling a high-frequency flow variation. Pulsed flow significantly increased filtration performance (target protein mass flow into the permeate increased by 26%) and cleaning success (protein removal increased by 28%). Furthermore, adding feed-side glue connections increased the mechanical membrane stability in terms of allowed volume throughput by ≥100% compared to unmodified modules, thus allowing operation with higher axial pressure drops, flow velocities and pulsation amplitudes.
doi_str_mv 10.3390/membranes13090791
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_60282c35229344f09e66ed7734220047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A771805125</galeid><doaj_id>oai_doaj_org_article_60282c35229344f09e66ed7734220047</doaj_id><sourcerecordid>A771805125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-48e5332abf60cdd0e9331f06f06d8ff51bc904c212826013d348b6f8818f7f9a3</originalsourceid><addsrcrecordid>eNplkl1vFCEUhidGY5vaH-AdiTf1YusBho-5Mk21ukkbm6xNLwnDx8pmBlaYqe6tv1zabYxVIAEO73kOHE7TvMZwSmkH70Y39llHVzCFDkSHnzWHBIRYABXs-V_rg-a4lA3UxoFxCi-bAyoEYwTTw-bXMprsdAlxja5d9imPOhqHkkerbch6WNymOVp0lew8uIJOVrdX5S3qd2g5bnO6u_dbTboPQ5h2SK91iGVCZz-DHtB1dqXM2aEPOW2RrpSbqer2seahOIsuhvTjVfPC67o7fpyPmpuLj1_PPy8uv3xanp9dLgzDMC1a6RilRPeeg7EWXEcp9sDrsNJ7hnvTQWsIJpJwwNTSVvbcS4mlF77T9KhZ7rk26Y3a5jDqvFNJB_VgSHmtdJ6CGZziUCGGMkI62rYeOse5s0LQlhCAVlTW-z1rO_ejs8bFqebqCfTpSQzf1DrdKQyMMtlBJZw8EnL6PrsyqTEU44ahfmmaiyKSdxxz4LRK3_wj3aQ5x5qrB1WLASSuqtO9aq3rC0L0qQY2tVs3BpOi86Haz4TAEhgmrDrgvYPJqZTs_J_rY1D3Jab-KzH6G-IRw7Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869410081</pqid></control><display><type>article</type><title>Increasing Performance of Spiral-Wound Modules (SWMs) by Improving Stability against Axial Pressure Drop and Utilising Pulsed Flow</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Kürzl, Christian ; Hartinger, Martin ; Ong, Patrick ; Schopf, Roland ; Schiffer, Simon ; Kulozik, Ulrich</creator><creatorcontrib>Kürzl, Christian ; Hartinger, Martin ; Ong, Patrick ; Schopf, Roland ; Schiffer, Simon ; Kulozik, Ulrich</creatorcontrib><description>Spacer-induced flow shadows and limited mechanical stability due to module construction and geometry are the main obstacles to improving the filtration performance and cleanability of microfiltration spiral-wound membranes (SWMs), applied to milk protein fractionation in this study. The goal of this study was first to improve filtration performance and cleanability by utilising pulsed flow in a modified pilot-scale filtration plant. The second goal was to enhance membrane stability against module deformation by flow-induced friction in the axial direction (“membrane telescoping”). This was accomplished by stabilising membrane layers, including spacers, at the membrane inlet by glue connections. Pulsed flow characteristics similar to those reported in previous lab-scale studies could be achieved by establishing an on/off bypass around the membrane module, thus enabling a high-frequency flow variation. Pulsed flow significantly increased filtration performance (target protein mass flow into the permeate increased by 26%) and cleaning success (protein removal increased by 28%). Furthermore, adding feed-side glue connections increased the mechanical membrane stability in terms of allowed volume throughput by ≥100% compared to unmodified modules, thus allowing operation with higher axial pressure drops, flow velocities and pulsation amplitudes.</description><identifier>ISSN: 2077-0375</identifier><identifier>EISSN: 2077-0375</identifier><identifier>DOI: 10.3390/membranes13090791</identifier><identifier>PMID: 37755213</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>axial pressure loss ; Efficiency ; Filtration ; Flow characteristics ; Flow stability ; Flow velocity ; Fractionation ; Frequency variation ; Friction ; Mass flow ; membrane performance ; Membranes ; Microfiltration ; Milk ; Milk proteins ; module stability ; Osmosis ; Packaging ; Pressure drop ; Proteins ; pulsed flow ; Spiral wound modules ; Telescoping</subject><ispartof>Membranes (Basel), 2023-09, Vol.13 (9), p.791</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-48e5332abf60cdd0e9331f06f06d8ff51bc904c212826013d348b6f8818f7f9a3</citedby><cites>FETCH-LOGICAL-c510t-48e5332abf60cdd0e9331f06f06d8ff51bc904c212826013d348b6f8818f7f9a3</cites><orcidid>0000-0001-9598-9242 ; 0000-0002-3070-5074 ; 0000-0002-5336-8314</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2869410081/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2869410081?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids></links><search><creatorcontrib>Kürzl, Christian</creatorcontrib><creatorcontrib>Hartinger, Martin</creatorcontrib><creatorcontrib>Ong, Patrick</creatorcontrib><creatorcontrib>Schopf, Roland</creatorcontrib><creatorcontrib>Schiffer, Simon</creatorcontrib><creatorcontrib>Kulozik, Ulrich</creatorcontrib><title>Increasing Performance of Spiral-Wound Modules (SWMs) by Improving Stability against Axial Pressure Drop and Utilising Pulsed Flow</title><title>Membranes (Basel)</title><description>Spacer-induced flow shadows and limited mechanical stability due to module construction and geometry are the main obstacles to improving the filtration performance and cleanability of microfiltration spiral-wound membranes (SWMs), applied to milk protein fractionation in this study. The goal of this study was first to improve filtration performance and cleanability by utilising pulsed flow in a modified pilot-scale filtration plant. The second goal was to enhance membrane stability against module deformation by flow-induced friction in the axial direction (“membrane telescoping”). This was accomplished by stabilising membrane layers, including spacers, at the membrane inlet by glue connections. Pulsed flow characteristics similar to those reported in previous lab-scale studies could be achieved by establishing an on/off bypass around the membrane module, thus enabling a high-frequency flow variation. Pulsed flow significantly increased filtration performance (target protein mass flow into the permeate increased by 26%) and cleaning success (protein removal increased by 28%). Furthermore, adding feed-side glue connections increased the mechanical membrane stability in terms of allowed volume throughput by ≥100% compared to unmodified modules, thus allowing operation with higher axial pressure drops, flow velocities and pulsation amplitudes.</description><subject>axial pressure loss</subject><subject>Efficiency</subject><subject>Filtration</subject><subject>Flow characteristics</subject><subject>Flow stability</subject><subject>Flow velocity</subject><subject>Fractionation</subject><subject>Frequency variation</subject><subject>Friction</subject><subject>Mass flow</subject><subject>membrane performance</subject><subject>Membranes</subject><subject>Microfiltration</subject><subject>Milk</subject><subject>Milk proteins</subject><subject>module stability</subject><subject>Osmosis</subject><subject>Packaging</subject><subject>Pressure drop</subject><subject>Proteins</subject><subject>pulsed flow</subject><subject>Spiral wound modules</subject><subject>Telescoping</subject><issn>2077-0375</issn><issn>2077-0375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplkl1vFCEUhidGY5vaH-AdiTf1YusBho-5Mk21ukkbm6xNLwnDx8pmBlaYqe6tv1zabYxVIAEO73kOHE7TvMZwSmkH70Y39llHVzCFDkSHnzWHBIRYABXs-V_rg-a4lA3UxoFxCi-bAyoEYwTTw-bXMprsdAlxja5d9imPOhqHkkerbch6WNymOVp0lew8uIJOVrdX5S3qd2g5bnO6u_dbTboPQ5h2SK91iGVCZz-DHtB1dqXM2aEPOW2RrpSbqer2seahOIsuhvTjVfPC67o7fpyPmpuLj1_PPy8uv3xanp9dLgzDMC1a6RilRPeeg7EWXEcp9sDrsNJ7hnvTQWsIJpJwwNTSVvbcS4mlF77T9KhZ7rk26Y3a5jDqvFNJB_VgSHmtdJ6CGZziUCGGMkI62rYeOse5s0LQlhCAVlTW-z1rO_ejs8bFqebqCfTpSQzf1DrdKQyMMtlBJZw8EnL6PrsyqTEU44ahfmmaiyKSdxxz4LRK3_wj3aQ5x5qrB1WLASSuqtO9aq3rC0L0qQY2tVs3BpOi86Haz4TAEhgmrDrgvYPJqZTs_J_rY1D3Jab-KzH6G-IRw7Q</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Kürzl, Christian</creator><creator>Hartinger, Martin</creator><creator>Ong, Patrick</creator><creator>Schopf, Roland</creator><creator>Schiffer, Simon</creator><creator>Kulozik, Ulrich</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9598-9242</orcidid><orcidid>https://orcid.org/0000-0002-3070-5074</orcidid><orcidid>https://orcid.org/0000-0002-5336-8314</orcidid></search><sort><creationdate>20230901</creationdate><title>Increasing Performance of Spiral-Wound Modules (SWMs) by Improving Stability against Axial Pressure Drop and Utilising Pulsed Flow</title><author>Kürzl, Christian ; Hartinger, Martin ; Ong, Patrick ; Schopf, Roland ; Schiffer, Simon ; Kulozik, Ulrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-48e5332abf60cdd0e9331f06f06d8ff51bc904c212826013d348b6f8818f7f9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>axial pressure loss</topic><topic>Efficiency</topic><topic>Filtration</topic><topic>Flow characteristics</topic><topic>Flow stability</topic><topic>Flow velocity</topic><topic>Fractionation</topic><topic>Frequency variation</topic><topic>Friction</topic><topic>Mass flow</topic><topic>membrane performance</topic><topic>Membranes</topic><topic>Microfiltration</topic><topic>Milk</topic><topic>Milk proteins</topic><topic>module stability</topic><topic>Osmosis</topic><topic>Packaging</topic><topic>Pressure drop</topic><topic>Proteins</topic><topic>pulsed flow</topic><topic>Spiral wound modules</topic><topic>Telescoping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kürzl, Christian</creatorcontrib><creatorcontrib>Hartinger, Martin</creatorcontrib><creatorcontrib>Ong, Patrick</creatorcontrib><creatorcontrib>Schopf, Roland</creatorcontrib><creatorcontrib>Schiffer, Simon</creatorcontrib><creatorcontrib>Kulozik, Ulrich</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Membranes (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kürzl, Christian</au><au>Hartinger, Martin</au><au>Ong, Patrick</au><au>Schopf, Roland</au><au>Schiffer, Simon</au><au>Kulozik, Ulrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Increasing Performance of Spiral-Wound Modules (SWMs) by Improving Stability against Axial Pressure Drop and Utilising Pulsed Flow</atitle><jtitle>Membranes (Basel)</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>13</volume><issue>9</issue><spage>791</spage><pages>791-</pages><issn>2077-0375</issn><eissn>2077-0375</eissn><abstract>Spacer-induced flow shadows and limited mechanical stability due to module construction and geometry are the main obstacles to improving the filtration performance and cleanability of microfiltration spiral-wound membranes (SWMs), applied to milk protein fractionation in this study. The goal of this study was first to improve filtration performance and cleanability by utilising pulsed flow in a modified pilot-scale filtration plant. The second goal was to enhance membrane stability against module deformation by flow-induced friction in the axial direction (“membrane telescoping”). This was accomplished by stabilising membrane layers, including spacers, at the membrane inlet by glue connections. Pulsed flow characteristics similar to those reported in previous lab-scale studies could be achieved by establishing an on/off bypass around the membrane module, thus enabling a high-frequency flow variation. Pulsed flow significantly increased filtration performance (target protein mass flow into the permeate increased by 26%) and cleaning success (protein removal increased by 28%). Furthermore, adding feed-side glue connections increased the mechanical membrane stability in terms of allowed volume throughput by ≥100% compared to unmodified modules, thus allowing operation with higher axial pressure drops, flow velocities and pulsation amplitudes.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>37755213</pmid><doi>10.3390/membranes13090791</doi><orcidid>https://orcid.org/0000-0001-9598-9242</orcidid><orcidid>https://orcid.org/0000-0002-3070-5074</orcidid><orcidid>https://orcid.org/0000-0002-5336-8314</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2077-0375
ispartof Membranes (Basel), 2023-09, Vol.13 (9), p.791
issn 2077-0375
2077-0375
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_60282c35229344f09e66ed7734220047
source Publicly Available Content Database; PubMed Central
subjects axial pressure loss
Efficiency
Filtration
Flow characteristics
Flow stability
Flow velocity
Fractionation
Frequency variation
Friction
Mass flow
membrane performance
Membranes
Microfiltration
Milk
Milk proteins
module stability
Osmosis
Packaging
Pressure drop
Proteins
pulsed flow
Spiral wound modules
Telescoping
title Increasing Performance of Spiral-Wound Modules (SWMs) by Improving Stability against Axial Pressure Drop and Utilising Pulsed Flow
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A40%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Increasing%20Performance%20of%20Spiral-Wound%20Modules%20(SWMs)%20by%20Improving%20Stability%20against%20Axial%20Pressure%20Drop%20and%20Utilising%20Pulsed%20Flow&rft.jtitle=Membranes%20(Basel)&rft.au=K%C3%BCrzl,%20Christian&rft.date=2023-09-01&rft.volume=13&rft.issue=9&rft.spage=791&rft.pages=791-&rft.issn=2077-0375&rft.eissn=2077-0375&rft_id=info:doi/10.3390/membranes13090791&rft_dat=%3Cgale_doaj_%3EA771805125%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c510t-48e5332abf60cdd0e9331f06f06d8ff51bc904c212826013d348b6f8818f7f9a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2869410081&rft_id=info:pmid/37755213&rft_galeid=A771805125&rfr_iscdi=true