Loading…

Development of a PET scanner for simultaneously imaging small animals with MRI and PET

Recently, positron emission tomography (PET) is playing an increasingly important role in the diagnosis and staging of cancer. Combined PET and X-ray computed tomography (PET-CT) scanners are now the modality of choice in cancer treatment planning. More recently, the combination of PET and magnetic...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2014-08, Vol.14 (8), p.14654-14671
Main Authors: Thompson, Christopher J, Goertzen, Andrew L, Thiessen, Jonathan D, Bishop, Daryl, Stortz, Greg, Kozlowski, Piotr, Retière, Fabrice, Zhang, Xuezhu, Sossi, Vesna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c575t-254bf50585a0458bece55bc89d4cf05644cde398fc6de0768e5577284d9594fd3
cites cdi_FETCH-LOGICAL-c575t-254bf50585a0458bece55bc89d4cf05644cde398fc6de0768e5577284d9594fd3
container_end_page 14671
container_issue 8
container_start_page 14654
container_title Sensors (Basel, Switzerland)
container_volume 14
creator Thompson, Christopher J
Goertzen, Andrew L
Thiessen, Jonathan D
Bishop, Daryl
Stortz, Greg
Kozlowski, Piotr
Retière, Fabrice
Zhang, Xuezhu
Sossi, Vesna
description Recently, positron emission tomography (PET) is playing an increasingly important role in the diagnosis and staging of cancer. Combined PET and X-ray computed tomography (PET-CT) scanners are now the modality of choice in cancer treatment planning. More recently, the combination of PET and magnetic resonance imaging (MRI) is being explored in many sites. Combining PET and MRI has presented many challenges since the photo-multiplier tubes (PMT) in PET do not function in high magnetic fields, and conventional PET detectors distort MRI images. Solid state light sensors like avalanche photo-diodes (APDs) and more recently silicon photo-multipliers (SiPMs) are much less sensitive to magnetic fields thus easing the compatibility issues. This paper presents the results of a group of Canadian scientists who are developing a PET detector ring which fits inside a high field small animal MRI scanner with the goal of providing simultaneous PET and MRI images of small rodents used in pre-clinical medical research. We discuss the evolution of both the crystal blocks (which detect annihilation photons from positron decay) and the SiPM array performance in the last four years which together combine to deliver significant system performance in terms of speed, energy and timing resolution.
doi_str_mv 10.3390/s140814654
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_604dbb0d3553452499a48c55011f7e21</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_604dbb0d3553452499a48c55011f7e21</doaj_id><sourcerecordid>1553710431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c575t-254bf50585a0458bece55bc89d4cf05644cde398fc6de0768e5577284d9594fd3</originalsourceid><addsrcrecordid>eNqFkl1rFDEUhgdR7Ife-AMk4I0Ia_NxzkzmRpBa24UWRaq3IZOP7SyZyZrMVPrvm3Vrbb3xKsk5Dw9vDqeqXjH6XoiWHmUGVDKoEZ5U-ww4LCTn9OmD-151kPOaUi6EkM-rPY6MU4bNfvXjk7t2IW4GN04keqLJ15NLko0eR5eIj4nkfpjDpEcX5xxuSD_oVT-uSB50CESP5R0y-dVPV-Ti27IU7NbwonrmS929vDsPq--fTy6PzxbnX06Xxx_PFwYbnBYcofNIUaKmgLJzxiF2RrYWjKdYAxjrRCu9qa2jTS1Lu2m4BNtiC96Kw2q589qo12qTSpp0o6Lu1e9CTCul09Sb4FRNwXYdtQJRAHJoWw3SIFLGfOM4K64PO9dm7gZnTZlI0uGR9HFn7K_UKl4rYI1sJRbB2ztBij9nlyc19Nm4EHbDU6xuWEnBof4_WkI2jILYxnrzD7qOcxrLVAtVMym4qNtCvdtRJsWck_P3uRlV2y1Rf7ekwK8f_vQe_bMW4hYtWbSm</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1561832369</pqid></control><display><type>article</type><title>Development of a PET scanner for simultaneously imaging small animals with MRI and PET</title><source>Access via ProQuest (Open Access)</source><source>PubMed Central</source><creator>Thompson, Christopher J ; Goertzen, Andrew L ; Thiessen, Jonathan D ; Bishop, Daryl ; Stortz, Greg ; Kozlowski, Piotr ; Retière, Fabrice ; Zhang, Xuezhu ; Sossi, Vesna</creator><creatorcontrib>Thompson, Christopher J ; Goertzen, Andrew L ; Thiessen, Jonathan D ; Bishop, Daryl ; Stortz, Greg ; Kozlowski, Piotr ; Retière, Fabrice ; Zhang, Xuezhu ; Sossi, Vesna</creatorcontrib><description>Recently, positron emission tomography (PET) is playing an increasingly important role in the diagnosis and staging of cancer. Combined PET and X-ray computed tomography (PET-CT) scanners are now the modality of choice in cancer treatment planning. More recently, the combination of PET and magnetic resonance imaging (MRI) is being explored in many sites. Combining PET and MRI has presented many challenges since the photo-multiplier tubes (PMT) in PET do not function in high magnetic fields, and conventional PET detectors distort MRI images. Solid state light sensors like avalanche photo-diodes (APDs) and more recently silicon photo-multipliers (SiPMs) are much less sensitive to magnetic fields thus easing the compatibility issues. This paper presents the results of a group of Canadian scientists who are developing a PET detector ring which fits inside a high field small animal MRI scanner with the goal of providing simultaneous PET and MRI images of small rodents used in pre-clinical medical research. We discuss the evolution of both the crystal blocks (which detect annihilation photons from positron decay) and the SiPM array performance in the last four years which together combine to deliver significant system performance in terms of speed, energy and timing resolution.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s140814654</identifier><identifier>PMID: 25120157</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Animals ; block crystal arrays ; Cancer ; Crystals ; Detectors ; Diagnostic Imaging - instrumentation ; Electronic mail systems ; Equipment Design - instrumentation ; Health sciences ; Image detection ; Magnetic fields ; Magnetic resonance imaging ; magnetic resonance imaging (MRI) ; Magnetic Resonance Imaging - instrumentation ; Photons ; Physics ; Positron emission ; positron emission tomography (PET) ; Positron-Emission Tomography - instrumentation ; Scanners ; Sensors ; Silicon - chemistry ; silicon photo-multipliers (SiPMs) ; Tomography ; Tomography, X-Ray Computed - instrumentation</subject><ispartof>Sensors (Basel, Switzerland), 2014-08, Vol.14 (8), p.14654-14671</ispartof><rights>Copyright MDPI AG 2014</rights><rights>2014 by the authors; licensee MDPI, Basel, Switzerland 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c575t-254bf50585a0458bece55bc89d4cf05644cde398fc6de0768e5577284d9594fd3</citedby><cites>FETCH-LOGICAL-c575t-254bf50585a0458bece55bc89d4cf05644cde398fc6de0768e5577284d9594fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1561832369/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1561832369?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25120157$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thompson, Christopher J</creatorcontrib><creatorcontrib>Goertzen, Andrew L</creatorcontrib><creatorcontrib>Thiessen, Jonathan D</creatorcontrib><creatorcontrib>Bishop, Daryl</creatorcontrib><creatorcontrib>Stortz, Greg</creatorcontrib><creatorcontrib>Kozlowski, Piotr</creatorcontrib><creatorcontrib>Retière, Fabrice</creatorcontrib><creatorcontrib>Zhang, Xuezhu</creatorcontrib><creatorcontrib>Sossi, Vesna</creatorcontrib><title>Development of a PET scanner for simultaneously imaging small animals with MRI and PET</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Recently, positron emission tomography (PET) is playing an increasingly important role in the diagnosis and staging of cancer. Combined PET and X-ray computed tomography (PET-CT) scanners are now the modality of choice in cancer treatment planning. More recently, the combination of PET and magnetic resonance imaging (MRI) is being explored in many sites. Combining PET and MRI has presented many challenges since the photo-multiplier tubes (PMT) in PET do not function in high magnetic fields, and conventional PET detectors distort MRI images. Solid state light sensors like avalanche photo-diodes (APDs) and more recently silicon photo-multipliers (SiPMs) are much less sensitive to magnetic fields thus easing the compatibility issues. This paper presents the results of a group of Canadian scientists who are developing a PET detector ring which fits inside a high field small animal MRI scanner with the goal of providing simultaneous PET and MRI images of small rodents used in pre-clinical medical research. We discuss the evolution of both the crystal blocks (which detect annihilation photons from positron decay) and the SiPM array performance in the last four years which together combine to deliver significant system performance in terms of speed, energy and timing resolution.</description><subject>Animals</subject><subject>block crystal arrays</subject><subject>Cancer</subject><subject>Crystals</subject><subject>Detectors</subject><subject>Diagnostic Imaging - instrumentation</subject><subject>Electronic mail systems</subject><subject>Equipment Design - instrumentation</subject><subject>Health sciences</subject><subject>Image detection</subject><subject>Magnetic fields</subject><subject>Magnetic resonance imaging</subject><subject>magnetic resonance imaging (MRI)</subject><subject>Magnetic Resonance Imaging - instrumentation</subject><subject>Photons</subject><subject>Physics</subject><subject>Positron emission</subject><subject>positron emission tomography (PET)</subject><subject>Positron-Emission Tomography - instrumentation</subject><subject>Scanners</subject><subject>Sensors</subject><subject>Silicon - chemistry</subject><subject>silicon photo-multipliers (SiPMs)</subject><subject>Tomography</subject><subject>Tomography, X-Ray Computed - instrumentation</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkl1rFDEUhgdR7Ife-AMk4I0Ia_NxzkzmRpBa24UWRaq3IZOP7SyZyZrMVPrvm3Vrbb3xKsk5Dw9vDqeqXjH6XoiWHmUGVDKoEZ5U-ww4LCTn9OmD-151kPOaUi6EkM-rPY6MU4bNfvXjk7t2IW4GN04keqLJ15NLko0eR5eIj4nkfpjDpEcX5xxuSD_oVT-uSB50CESP5R0y-dVPV-Ti27IU7NbwonrmS929vDsPq--fTy6PzxbnX06Xxx_PFwYbnBYcofNIUaKmgLJzxiF2RrYWjKdYAxjrRCu9qa2jTS1Lu2m4BNtiC96Kw2q589qo12qTSpp0o6Lu1e9CTCul09Sb4FRNwXYdtQJRAHJoWw3SIFLGfOM4K64PO9dm7gZnTZlI0uGR9HFn7K_UKl4rYI1sJRbB2ztBij9nlyc19Nm4EHbDU6xuWEnBof4_WkI2jILYxnrzD7qOcxrLVAtVMym4qNtCvdtRJsWck_P3uRlV2y1Rf7ekwK8f_vQe_bMW4hYtWbSm</recordid><startdate>20140812</startdate><enddate>20140812</enddate><creator>Thompson, Christopher J</creator><creator>Goertzen, Andrew L</creator><creator>Thiessen, Jonathan D</creator><creator>Bishop, Daryl</creator><creator>Stortz, Greg</creator><creator>Kozlowski, Piotr</creator><creator>Retière, Fabrice</creator><creator>Zhang, Xuezhu</creator><creator>Sossi, Vesna</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140812</creationdate><title>Development of a PET scanner for simultaneously imaging small animals with MRI and PET</title><author>Thompson, Christopher J ; Goertzen, Andrew L ; Thiessen, Jonathan D ; Bishop, Daryl ; Stortz, Greg ; Kozlowski, Piotr ; Retière, Fabrice ; Zhang, Xuezhu ; Sossi, Vesna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c575t-254bf50585a0458bece55bc89d4cf05644cde398fc6de0768e5577284d9594fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>block crystal arrays</topic><topic>Cancer</topic><topic>Crystals</topic><topic>Detectors</topic><topic>Diagnostic Imaging - instrumentation</topic><topic>Electronic mail systems</topic><topic>Equipment Design - instrumentation</topic><topic>Health sciences</topic><topic>Image detection</topic><topic>Magnetic fields</topic><topic>Magnetic resonance imaging</topic><topic>magnetic resonance imaging (MRI)</topic><topic>Magnetic Resonance Imaging - instrumentation</topic><topic>Photons</topic><topic>Physics</topic><topic>Positron emission</topic><topic>positron emission tomography (PET)</topic><topic>Positron-Emission Tomography - instrumentation</topic><topic>Scanners</topic><topic>Sensors</topic><topic>Silicon - chemistry</topic><topic>silicon photo-multipliers (SiPMs)</topic><topic>Tomography</topic><topic>Tomography, X-Ray Computed - instrumentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thompson, Christopher J</creatorcontrib><creatorcontrib>Goertzen, Andrew L</creatorcontrib><creatorcontrib>Thiessen, Jonathan D</creatorcontrib><creatorcontrib>Bishop, Daryl</creatorcontrib><creatorcontrib>Stortz, Greg</creatorcontrib><creatorcontrib>Kozlowski, Piotr</creatorcontrib><creatorcontrib>Retière, Fabrice</creatorcontrib><creatorcontrib>Zhang, Xuezhu</creatorcontrib><creatorcontrib>Sossi, Vesna</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thompson, Christopher J</au><au>Goertzen, Andrew L</au><au>Thiessen, Jonathan D</au><au>Bishop, Daryl</au><au>Stortz, Greg</au><au>Kozlowski, Piotr</au><au>Retière, Fabrice</au><au>Zhang, Xuezhu</au><au>Sossi, Vesna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a PET scanner for simultaneously imaging small animals with MRI and PET</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2014-08-12</date><risdate>2014</risdate><volume>14</volume><issue>8</issue><spage>14654</spage><epage>14671</epage><pages>14654-14671</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Recently, positron emission tomography (PET) is playing an increasingly important role in the diagnosis and staging of cancer. Combined PET and X-ray computed tomography (PET-CT) scanners are now the modality of choice in cancer treatment planning. More recently, the combination of PET and magnetic resonance imaging (MRI) is being explored in many sites. Combining PET and MRI has presented many challenges since the photo-multiplier tubes (PMT) in PET do not function in high magnetic fields, and conventional PET detectors distort MRI images. Solid state light sensors like avalanche photo-diodes (APDs) and more recently silicon photo-multipliers (SiPMs) are much less sensitive to magnetic fields thus easing the compatibility issues. This paper presents the results of a group of Canadian scientists who are developing a PET detector ring which fits inside a high field small animal MRI scanner with the goal of providing simultaneous PET and MRI images of small rodents used in pre-clinical medical research. We discuss the evolution of both the crystal blocks (which detect annihilation photons from positron decay) and the SiPM array performance in the last four years which together combine to deliver significant system performance in terms of speed, energy and timing resolution.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>25120157</pmid><doi>10.3390/s140814654</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2014-08, Vol.14 (8), p.14654-14671
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_604dbb0d3553452499a48c55011f7e21
source Access via ProQuest (Open Access); PubMed Central
subjects Animals
block crystal arrays
Cancer
Crystals
Detectors
Diagnostic Imaging - instrumentation
Electronic mail systems
Equipment Design - instrumentation
Health sciences
Image detection
Magnetic fields
Magnetic resonance imaging
magnetic resonance imaging (MRI)
Magnetic Resonance Imaging - instrumentation
Photons
Physics
Positron emission
positron emission tomography (PET)
Positron-Emission Tomography - instrumentation
Scanners
Sensors
Silicon - chemistry
silicon photo-multipliers (SiPMs)
Tomography
Tomography, X-Ray Computed - instrumentation
title Development of a PET scanner for simultaneously imaging small animals with MRI and PET
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A54%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20PET%20scanner%20for%20simultaneously%20imaging%20small%20animals%20with%20MRI%20and%20PET&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Thompson,%20Christopher%20J&rft.date=2014-08-12&rft.volume=14&rft.issue=8&rft.spage=14654&rft.epage=14671&rft.pages=14654-14671&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s140814654&rft_dat=%3Cproquest_doaj_%3E1553710431%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c575t-254bf50585a0458bece55bc89d4cf05644cde398fc6de0768e5577284d9594fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1561832369&rft_id=info:pmid/25120157&rfr_iscdi=true