Loading…

Lunar Solar Occultation Explorer (Lunasox)

In the present decade and beyond, now 51 years after the last Apollo landing, the NASA Artemis human exploration program will offer abundant opportunities for heliophysics investigations from, by, and of the Moon from the vantage points of the lunar orbit and the surface. The Lunar Solar Occultation...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in astronomy and space sciences 2023-06, Vol.10
Main Authors: Cooper, John F, Habbal, Shadia R, Boe, Benjamin, Angelopoulos, Vassilis, Sibeck, David G, Paschalidis, Nikolaos, Jr, Edward C Sittler, Jian, Lan K, Killen, Rosemary M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c329t-502373b1b64ac11d073fac802524fa5f5c74041d879ca5122fc522b0a43bd8183
container_end_page
container_issue
container_start_page
container_title Frontiers in astronomy and space sciences
container_volume 10
creator Cooper, John F
Habbal, Shadia R
Boe, Benjamin
Angelopoulos, Vassilis
Sibeck, David G
Paschalidis, Nikolaos
Jr, Edward C Sittler
Jian, Lan K
Killen, Rosemary M
description In the present decade and beyond, now 51 years after the last Apollo landing, the NASA Artemis human exploration program will offer abundant opportunities for heliophysics investigations from, by, and of the Moon from the vantage points of the lunar orbit and the surface. The Lunar Solar Occultation Explorer (LunaSOX) concept uses the lunar limb to occult the solar disk for high-resolution coronal observations at hourly, daily, to biweekly cadences from spacecraft either in the lunar orbit or at the surface. A 0.2 m diameter solar telescope in orbit with white light and narrow-band visible filters would provide arcsecond spectroscopic imaging of the low-to-high corona (1–10 R☉) with an upper limit of 10–12 B☉ on the local scattered light background from lunar atmospheric dust, as compared to 10–9 B☉ for Earth ground-based solar eclipse observations looking up through the atmosphere at totality. For eclipse observations from and by the Moon, there would be no significant atmospheric disturbances that otherwise limit seeing to arcsec resolution from Earth’s surface. The present eccentric orbits of the ARTEMIS P1 and P2 spacecraft are used as models for a 1 × 10 Rm orbit of LunaSOX to compute the times of solar eclipse intervals, up to 2 hours in duration between the east and west solar hemispheres at a daily cadence for coronal observations at 1–16 R☉ when the orbital aposelene is in anti-sunward directions. In a low-altitude circular orbit and from the surface, the observational cadences would, respectively, be hourly and biweekly. LunaSOX satellites also carrying in situ space environment instruments could integrate into a network of orbital platforms for space weather monitoring and communications relay to far-side surface lander and permanent base sites, e.g., for low-frequency radio cosmology and detection of exoplanet magnetospheres.
doi_str_mv 10.3389/fspas.2023.1163517
format article
fullrecord <record><control><sourceid>nasa_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_605c9020a1ea48f7a5618280a36c8bbb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_605c9020a1ea48f7a5618280a36c8bbb</doaj_id><sourcerecordid>20230009173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-502373b1b64ac11d073fac802524fa5f5c74041d879ca5122fc522b0a43bd8183</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWGr_gHjoUYWtyWTzdZRStVDoQQVvYZLdyJa1KckW6r932xXxMjPMO_My8xByzeiMc20eQt5hngEFPmNMcsHUGRkBGFkYrT7O_9WXZJLzhlLKtNJG8hG5X-23mKavse3j2vt922HXxO10cdi1MdVpenucyPFwd0UuAra5nvzmMXl_WrzNX4rV-nk5f1wVnoPpCtHfobhjTpboGauo4gG9piCgDCiC8KqkJau0Mh4FAwheADiKJXeVZpqPyXLwrSJu7C41X5i-bcTGnhoxfVpMXePb2koqvKFAkdVY6qBQSKZBU-TSa-dc7wWDl08x51SHPz9G7RGePcGzR3j2F16_dDMs9X-j3XZp0Htsplf5D7GaaZU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lunar Solar Occultation Explorer (Lunasox)</title><source>EZB Electronic Journals Library</source><creator>Cooper, John F ; Habbal, Shadia R ; Boe, Benjamin ; Angelopoulos, Vassilis ; Sibeck, David G ; Paschalidis, Nikolaos ; Jr, Edward C Sittler ; Jian, Lan K ; Killen, Rosemary M</creator><creatorcontrib>Cooper, John F ; Habbal, Shadia R ; Boe, Benjamin ; Angelopoulos, Vassilis ; Sibeck, David G ; Paschalidis, Nikolaos ; Jr, Edward C Sittler ; Jian, Lan K ; Killen, Rosemary M</creatorcontrib><description>In the present decade and beyond, now 51 years after the last Apollo landing, the NASA Artemis human exploration program will offer abundant opportunities for heliophysics investigations from, by, and of the Moon from the vantage points of the lunar orbit and the surface. The Lunar Solar Occultation Explorer (LunaSOX) concept uses the lunar limb to occult the solar disk for high-resolution coronal observations at hourly, daily, to biweekly cadences from spacecraft either in the lunar orbit or at the surface. A 0.2 m diameter solar telescope in orbit with white light and narrow-band visible filters would provide arcsecond spectroscopic imaging of the low-to-high corona (1–10 R☉) with an upper limit of 10–12 B☉ on the local scattered light background from lunar atmospheric dust, as compared to 10–9 B☉ for Earth ground-based solar eclipse observations looking up through the atmosphere at totality. For eclipse observations from and by the Moon, there would be no significant atmospheric disturbances that otherwise limit seeing to arcsec resolution from Earth’s surface. The present eccentric orbits of the ARTEMIS P1 and P2 spacecraft are used as models for a 1 × 10 Rm orbit of LunaSOX to compute the times of solar eclipse intervals, up to 2 hours in duration between the east and west solar hemispheres at a daily cadence for coronal observations at 1–16 R☉ when the orbital aposelene is in anti-sunward directions. In a low-altitude circular orbit and from the surface, the observational cadences would, respectively, be hourly and biweekly. LunaSOX satellites also carrying in situ space environment instruments could integrate into a network of orbital platforms for space weather monitoring and communications relay to far-side surface lander and permanent base sites, e.g., for low-frequency radio cosmology and detection of exoplanet magnetospheres.</description><identifier>ISSN: 2296-987X</identifier><identifier>EISSN: 2296-987X</identifier><identifier>DOI: 10.3389/fspas.2023.1163517</identifier><language>eng</language><publisher>Goddard Space Flight Center: Frontiers Media</publisher><subject>heliophysics ; Lunar and Planetary Science and Exploration ; Moon ; solar corona ; solar eclipse ; solar wind</subject><ispartof>Frontiers in astronomy and space sciences, 2023-06, Vol.10</ispartof><rights>Copyright Determination: MAY_INCLUDE_COPYRIGHT_MATERIAL</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c329t-502373b1b64ac11d073fac802524fa5f5c74041d879ca5122fc522b0a43bd8183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Cooper, John F</creatorcontrib><creatorcontrib>Habbal, Shadia R</creatorcontrib><creatorcontrib>Boe, Benjamin</creatorcontrib><creatorcontrib>Angelopoulos, Vassilis</creatorcontrib><creatorcontrib>Sibeck, David G</creatorcontrib><creatorcontrib>Paschalidis, Nikolaos</creatorcontrib><creatorcontrib>Jr, Edward C Sittler</creatorcontrib><creatorcontrib>Jian, Lan K</creatorcontrib><creatorcontrib>Killen, Rosemary M</creatorcontrib><title>Lunar Solar Occultation Explorer (Lunasox)</title><title>Frontiers in astronomy and space sciences</title><description>In the present decade and beyond, now 51 years after the last Apollo landing, the NASA Artemis human exploration program will offer abundant opportunities for heliophysics investigations from, by, and of the Moon from the vantage points of the lunar orbit and the surface. The Lunar Solar Occultation Explorer (LunaSOX) concept uses the lunar limb to occult the solar disk for high-resolution coronal observations at hourly, daily, to biweekly cadences from spacecraft either in the lunar orbit or at the surface. A 0.2 m diameter solar telescope in orbit with white light and narrow-band visible filters would provide arcsecond spectroscopic imaging of the low-to-high corona (1–10 R☉) with an upper limit of 10–12 B☉ on the local scattered light background from lunar atmospheric dust, as compared to 10–9 B☉ for Earth ground-based solar eclipse observations looking up through the atmosphere at totality. For eclipse observations from and by the Moon, there would be no significant atmospheric disturbances that otherwise limit seeing to arcsec resolution from Earth’s surface. The present eccentric orbits of the ARTEMIS P1 and P2 spacecraft are used as models for a 1 × 10 Rm orbit of LunaSOX to compute the times of solar eclipse intervals, up to 2 hours in duration between the east and west solar hemispheres at a daily cadence for coronal observations at 1–16 R☉ when the orbital aposelene is in anti-sunward directions. In a low-altitude circular orbit and from the surface, the observational cadences would, respectively, be hourly and biweekly. LunaSOX satellites also carrying in situ space environment instruments could integrate into a network of orbital platforms for space weather monitoring and communications relay to far-side surface lander and permanent base sites, e.g., for low-frequency radio cosmology and detection of exoplanet magnetospheres.</description><subject>heliophysics</subject><subject>Lunar and Planetary Science and Exploration</subject><subject>Moon</subject><subject>solar corona</subject><subject>solar eclipse</subject><subject>solar wind</subject><issn>2296-987X</issn><issn>2296-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkE1LAzEQhoMoWGr_gHjoUYWtyWTzdZRStVDoQQVvYZLdyJa1KckW6r932xXxMjPMO_My8xByzeiMc20eQt5hngEFPmNMcsHUGRkBGFkYrT7O_9WXZJLzhlLKtNJG8hG5X-23mKavse3j2vt922HXxO10cdi1MdVpenucyPFwd0UuAra5nvzmMXl_WrzNX4rV-nk5f1wVnoPpCtHfobhjTpboGauo4gG9piCgDCiC8KqkJau0Mh4FAwheADiKJXeVZpqPyXLwrSJu7C41X5i-bcTGnhoxfVpMXePb2koqvKFAkdVY6qBQSKZBU-TSa-dc7wWDl08x51SHPz9G7RGePcGzR3j2F16_dDMs9X-j3XZp0Htsplf5D7GaaZU</recordid><startdate>20230623</startdate><enddate>20230623</enddate><creator>Cooper, John F</creator><creator>Habbal, Shadia R</creator><creator>Boe, Benjamin</creator><creator>Angelopoulos, Vassilis</creator><creator>Sibeck, David G</creator><creator>Paschalidis, Nikolaos</creator><creator>Jr, Edward C Sittler</creator><creator>Jian, Lan K</creator><creator>Killen, Rosemary M</creator><general>Frontiers Media</general><general>Frontiers Media S.A</general><scope>CYE</scope><scope>CYI</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20230623</creationdate><title>Lunar Solar Occultation Explorer (Lunasox)</title><author>Cooper, John F ; Habbal, Shadia R ; Boe, Benjamin ; Angelopoulos, Vassilis ; Sibeck, David G ; Paschalidis, Nikolaos ; Jr, Edward C Sittler ; Jian, Lan K ; Killen, Rosemary M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-502373b1b64ac11d073fac802524fa5f5c74041d879ca5122fc522b0a43bd8183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>heliophysics</topic><topic>Lunar and Planetary Science and Exploration</topic><topic>Moon</topic><topic>solar corona</topic><topic>solar eclipse</topic><topic>solar wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cooper, John F</creatorcontrib><creatorcontrib>Habbal, Shadia R</creatorcontrib><creatorcontrib>Boe, Benjamin</creatorcontrib><creatorcontrib>Angelopoulos, Vassilis</creatorcontrib><creatorcontrib>Sibeck, David G</creatorcontrib><creatorcontrib>Paschalidis, Nikolaos</creatorcontrib><creatorcontrib>Jr, Edward C Sittler</creatorcontrib><creatorcontrib>Jian, Lan K</creatorcontrib><creatorcontrib>Killen, Rosemary M</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>CrossRef</collection><collection>Directory of Open Access Journals - May need to register for free articles</collection><jtitle>Frontiers in astronomy and space sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cooper, John F</au><au>Habbal, Shadia R</au><au>Boe, Benjamin</au><au>Angelopoulos, Vassilis</au><au>Sibeck, David G</au><au>Paschalidis, Nikolaos</au><au>Jr, Edward C Sittler</au><au>Jian, Lan K</au><au>Killen, Rosemary M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lunar Solar Occultation Explorer (Lunasox)</atitle><jtitle>Frontiers in astronomy and space sciences</jtitle><date>2023-06-23</date><risdate>2023</risdate><volume>10</volume><issn>2296-987X</issn><eissn>2296-987X</eissn><abstract>In the present decade and beyond, now 51 years after the last Apollo landing, the NASA Artemis human exploration program will offer abundant opportunities for heliophysics investigations from, by, and of the Moon from the vantage points of the lunar orbit and the surface. The Lunar Solar Occultation Explorer (LunaSOX) concept uses the lunar limb to occult the solar disk for high-resolution coronal observations at hourly, daily, to biweekly cadences from spacecraft either in the lunar orbit or at the surface. A 0.2 m diameter solar telescope in orbit with white light and narrow-band visible filters would provide arcsecond spectroscopic imaging of the low-to-high corona (1–10 R☉) with an upper limit of 10–12 B☉ on the local scattered light background from lunar atmospheric dust, as compared to 10–9 B☉ for Earth ground-based solar eclipse observations looking up through the atmosphere at totality. For eclipse observations from and by the Moon, there would be no significant atmospheric disturbances that otherwise limit seeing to arcsec resolution from Earth’s surface. The present eccentric orbits of the ARTEMIS P1 and P2 spacecraft are used as models for a 1 × 10 Rm orbit of LunaSOX to compute the times of solar eclipse intervals, up to 2 hours in duration between the east and west solar hemispheres at a daily cadence for coronal observations at 1–16 R☉ when the orbital aposelene is in anti-sunward directions. In a low-altitude circular orbit and from the surface, the observational cadences would, respectively, be hourly and biweekly. LunaSOX satellites also carrying in situ space environment instruments could integrate into a network of orbital platforms for space weather monitoring and communications relay to far-side surface lander and permanent base sites, e.g., for low-frequency radio cosmology and detection of exoplanet magnetospheres.</abstract><cop>Goddard Space Flight Center</cop><pub>Frontiers Media</pub><doi>10.3389/fspas.2023.1163517</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2296-987X
ispartof Frontiers in astronomy and space sciences, 2023-06, Vol.10
issn 2296-987X
2296-987X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_605c9020a1ea48f7a5618280a36c8bbb
source EZB Electronic Journals Library
subjects heliophysics
Lunar and Planetary Science and Exploration
Moon
solar corona
solar eclipse
solar wind
title Lunar Solar Occultation Explorer (Lunasox)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A41%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-nasa_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lunar%20Solar%20Occultation%20Explorer%20(Lunasox)&rft.jtitle=Frontiers%20in%20astronomy%20and%20space%20sciences&rft.au=Cooper,%20John%20F&rft.date=2023-06-23&rft.volume=10&rft.issn=2296-987X&rft.eissn=2296-987X&rft_id=info:doi/10.3389/fspas.2023.1163517&rft_dat=%3Cnasa_doaj_%3E20230009173%3C/nasa_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c329t-502373b1b64ac11d073fac802524fa5f5c74041d879ca5122fc522b0a43bd8183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true