Loading…

A New Approach for Determining the Curvature Ductility of Reinforced Concrete Beams

This paper presents a numerical parametric study of the moment-curvature and curvature ductility of doubly-reinforced beams with different parameters. The effects of the strength of the concrete and the amount of the reinforcement, including the tensile and compression reinforcement on the complete...

Full description

Saved in:
Bibliographic Details
Published in:Slovak journal of civil engineering 2022-03, Vol.30 (1), p.8-20
Main Authors: Foroughi, Saeid, Yuksel, S. Bahadir
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a numerical parametric study of the moment-curvature and curvature ductility of doubly-reinforced beams with different parameters. The effects of the strength of the concrete and the amount of the reinforcement, including the tensile and compression reinforcement on the complete moment-curvature behavior and the curvature ductility factor of the beam sections, have been studied. A new predictive formula for the ductility factor of beam sections that considers the different parameters has been developed. In a continuation of the study, the flexural ductility of beams designed with different parameters according to the ductility factor proposed by different researchers was investigated. Based on the results of the numerical analysis, the proposed predictions for the curvature ductility factor were verified by comparisons with other predictive formulas. The proposed formula offers fairly accurate and consistent predictions for the curvature ductility factor of beam sections. It is shown that the concrete’s compression strength and the amount of reinforcing steel, including the compression reinforcement ratios, have an effect on the curvature ductility factor of beam sections.
ISSN:1338-3973
1210-3896
1338-3973
DOI:10.2478/sjce-2022-0002