Loading…

Ordered Clusters of the Complete Oxidative Phosphorylation System in Cardiac Mitochondria

The existence of a complete oxidative phosphorylation system (OXPHOS) supercomplex including both electron transport system and ATP synthases has long been assumed based on functional evidence. However, no structural confirmation of the docking between ATP synthase and proton pumps has been obtained...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2021-02, Vol.22 (3), p.1462
Main Authors: Nesterov, Semen, Chesnokov, Yury, Kamyshinsky, Roman, Panteleeva, Alisa, Lyamzaev, Konstantin, Vasilov, Raif, Yaguzhinsky, Lev
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The existence of a complete oxidative phosphorylation system (OXPHOS) supercomplex including both electron transport system and ATP synthases has long been assumed based on functional evidence. However, no structural confirmation of the docking between ATP synthase and proton pumps has been obtained. In this study, cryo-electron tomography was used to reveal the supramolecular architecture of the rat heart mitochondria cristae during ATP synthesis. Respirasome and ATP synthase structure in situ were determined using subtomogram averaging. The obtained reconstructions of the inner mitochondrial membrane demonstrated that rows of respiratory chain supercomplexes can dock with rows of ATP synthases forming oligomeric ordered clusters. These ordered clusters indicate a new type of OXPHOS structural organization. It should ensure the quickness, efficiency, and damage resistance of OXPHOS, providing a direct proton transfer from pumps to ATP synthase along the lateral pH gradient without energy dissipation.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms22031462