Loading…

An Electric Vehicle Charge Scheduling Approach Suited to Local and Supplying Distribution Transformers

Distribution networks with high electric vehicle (EV) penetration levels can experience transformer overloading and voltage instability issues. A charge scheduling approach is proposed to mitigate against these issues that suits smart home settings in residential areas. It comprises measurement syst...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2020-07, Vol.13 (13), p.3486
Main Authors: Kurniawan, Teguh, Baguley, Craig A., Madawala, Udaya K., Suwarno, Suwarno, Hariyanto, Nanang, Adianto, Yuana
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-d8c9dfeca2aef767773f5ad54cd0fd38b1c306c25851689364f7dafb8202bb993
cites cdi_FETCH-LOGICAL-c361t-d8c9dfeca2aef767773f5ad54cd0fd38b1c306c25851689364f7dafb8202bb993
container_end_page
container_issue 13
container_start_page 3486
container_title Energies (Basel)
container_volume 13
creator Kurniawan, Teguh
Baguley, Craig A.
Madawala, Udaya K.
Suwarno, Suwarno
Hariyanto, Nanang
Adianto, Yuana
description Distribution networks with high electric vehicle (EV) penetration levels can experience transformer overloading and voltage instability issues. A charge scheduling approach is proposed to mitigate against these issues that suits smart home settings in residential areas. It comprises measurement systems located at distribution transformers that communicate directly with fuzzy logic controller (FLC) systems embedded within EV supply equipment (EVSE). This realizes a reduction in data processing requirements compared to more centralized control approaches, which is advantageous for distribution networks with large numbers of transformers and EV scheduling requests. A case study employing the proposed approach is presented. Realistic driver behavior patterns, EV types, and multivariate probabilistic modeling were used to estimate EV charging demands, daily travel mileage, and plug-in times. A Monte Carlo simulation approach was developed to obtain EV charging loads. The effectiveness of mitigation in terms of reducing distribution transformer peak load levels and losses, as well as improving voltage stability is demonstrated for a distribution network in Jakarta, Indonesia.
doi_str_mv 10.3390/en13133486
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_60c54a90802641f3a4cf1131ade5eb3d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_60c54a90802641f3a4cf1131ade5eb3d</doaj_id><sourcerecordid>2422293811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-d8c9dfeca2aef767773f5ad54cd0fd38b1c306c25851689364f7dafb8202bb993</originalsourceid><addsrcrecordid>eNpNUctOwzAQtBBIVIULX2CJG1LB9iZOfKzKU6rEoYWrtfGjTZXGwU4O_D0pRcBedjUaze7sEHLF2S2AYneu5cABslKekAlXSs44K-D033xOLlPasbHgwIQJ8fOWPjTO9LE29N1ta9M4uthi3Di6Mltnh6ZuN3TedTGg2dLVUPfO0j7QZTDYUGztiHVd83mg3ddpFKqGvg4tXUdskw9x72K6IGcem-Quf_qUvD0-rBfPs-Xr08tivpwZkLyf2dIo651Bgc4XsigK8DnaPDOWeQtlxQ0waURe5lyWCmTmC4u-KgUTVaUUTMnLUdcG3Oku1nuMnzpgrb-BEDcaY38wqSUzeYaKlUzIjHvAzHg-PhCty10FdtS6PmqN1j8Gl3q9C0Nsx_O1yIQQCsqRPyU3R5aJIaXo_O9WzvQhFv0XC3wBkbF_kA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2422293811</pqid></control><display><type>article</type><title>An Electric Vehicle Charge Scheduling Approach Suited to Local and Supplying Distribution Transformers</title><source>Publicly Available Content (ProQuest)</source><creator>Kurniawan, Teguh ; Baguley, Craig A. ; Madawala, Udaya K. ; Suwarno, Suwarno ; Hariyanto, Nanang ; Adianto, Yuana</creator><creatorcontrib>Kurniawan, Teguh ; Baguley, Craig A. ; Madawala, Udaya K. ; Suwarno, Suwarno ; Hariyanto, Nanang ; Adianto, Yuana</creatorcontrib><description>Distribution networks with high electric vehicle (EV) penetration levels can experience transformer overloading and voltage instability issues. A charge scheduling approach is proposed to mitigate against these issues that suits smart home settings in residential areas. It comprises measurement systems located at distribution transformers that communicate directly with fuzzy logic controller (FLC) systems embedded within EV supply equipment (EVSE). This realizes a reduction in data processing requirements compared to more centralized control approaches, which is advantageous for distribution networks with large numbers of transformers and EV scheduling requests. A case study employing the proposed approach is presented. Realistic driver behavior patterns, EV types, and multivariate probabilistic modeling were used to estimate EV charging demands, daily travel mileage, and plug-in times. A Monte Carlo simulation approach was developed to obtain EV charging loads. The effectiveness of mitigation in terms of reducing distribution transformer peak load levels and losses, as well as improving voltage stability is demonstrated for a distribution network in Jakarta, Indonesia.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en13133486</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Automobiles ; Case studies ; charge scheduling ; Computer simulation ; Data processing ; distribution transformer ; Driver behavior ; Electric vehicles ; Embedded systems ; Fuzzy logic ; Fuzzy systems ; Load ; Load distribution ; Mitigation ; Monte Carlo simulation ; Peak load ; Residential areas ; Smart buildings ; Stress concentration ; Voltage ; Voltage stability</subject><ispartof>Energies (Basel), 2020-07, Vol.13 (13), p.3486</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-d8c9dfeca2aef767773f5ad54cd0fd38b1c306c25851689364f7dafb8202bb993</citedby><cites>FETCH-LOGICAL-c361t-d8c9dfeca2aef767773f5ad54cd0fd38b1c306c25851689364f7dafb8202bb993</cites><orcidid>0000-0002-3618-963X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2422293811/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2422293811?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25744,27915,27916,37003,44581,74887</link.rule.ids></links><search><creatorcontrib>Kurniawan, Teguh</creatorcontrib><creatorcontrib>Baguley, Craig A.</creatorcontrib><creatorcontrib>Madawala, Udaya K.</creatorcontrib><creatorcontrib>Suwarno, Suwarno</creatorcontrib><creatorcontrib>Hariyanto, Nanang</creatorcontrib><creatorcontrib>Adianto, Yuana</creatorcontrib><title>An Electric Vehicle Charge Scheduling Approach Suited to Local and Supplying Distribution Transformers</title><title>Energies (Basel)</title><description>Distribution networks with high electric vehicle (EV) penetration levels can experience transformer overloading and voltage instability issues. A charge scheduling approach is proposed to mitigate against these issues that suits smart home settings in residential areas. It comprises measurement systems located at distribution transformers that communicate directly with fuzzy logic controller (FLC) systems embedded within EV supply equipment (EVSE). This realizes a reduction in data processing requirements compared to more centralized control approaches, which is advantageous for distribution networks with large numbers of transformers and EV scheduling requests. A case study employing the proposed approach is presented. Realistic driver behavior patterns, EV types, and multivariate probabilistic modeling were used to estimate EV charging demands, daily travel mileage, and plug-in times. A Monte Carlo simulation approach was developed to obtain EV charging loads. The effectiveness of mitigation in terms of reducing distribution transformer peak load levels and losses, as well as improving voltage stability is demonstrated for a distribution network in Jakarta, Indonesia.</description><subject>Automobiles</subject><subject>Case studies</subject><subject>charge scheduling</subject><subject>Computer simulation</subject><subject>Data processing</subject><subject>distribution transformer</subject><subject>Driver behavior</subject><subject>Electric vehicles</subject><subject>Embedded systems</subject><subject>Fuzzy logic</subject><subject>Fuzzy systems</subject><subject>Load</subject><subject>Load distribution</subject><subject>Mitigation</subject><subject>Monte Carlo simulation</subject><subject>Peak load</subject><subject>Residential areas</subject><subject>Smart buildings</subject><subject>Stress concentration</subject><subject>Voltage</subject><subject>Voltage stability</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQtBBIVIULX2CJG1LB9iZOfKzKU6rEoYWrtfGjTZXGwU4O_D0pRcBedjUaze7sEHLF2S2AYneu5cABslKekAlXSs44K-D033xOLlPasbHgwIQJ8fOWPjTO9LE29N1ta9M4uthi3Di6Mltnh6ZuN3TedTGg2dLVUPfO0j7QZTDYUGztiHVd83mg3ddpFKqGvg4tXUdskw9x72K6IGcem-Quf_qUvD0-rBfPs-Xr08tivpwZkLyf2dIo651Bgc4XsigK8DnaPDOWeQtlxQ0waURe5lyWCmTmC4u-KgUTVaUUTMnLUdcG3Oku1nuMnzpgrb-BEDcaY38wqSUzeYaKlUzIjHvAzHg-PhCty10FdtS6PmqN1j8Gl3q9C0Nsx_O1yIQQCsqRPyU3R5aJIaXo_O9WzvQhFv0XC3wBkbF_kA</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Kurniawan, Teguh</creator><creator>Baguley, Craig A.</creator><creator>Madawala, Udaya K.</creator><creator>Suwarno, Suwarno</creator><creator>Hariyanto, Nanang</creator><creator>Adianto, Yuana</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3618-963X</orcidid></search><sort><creationdate>20200701</creationdate><title>An Electric Vehicle Charge Scheduling Approach Suited to Local and Supplying Distribution Transformers</title><author>Kurniawan, Teguh ; Baguley, Craig A. ; Madawala, Udaya K. ; Suwarno, Suwarno ; Hariyanto, Nanang ; Adianto, Yuana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-d8c9dfeca2aef767773f5ad54cd0fd38b1c306c25851689364f7dafb8202bb993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automobiles</topic><topic>Case studies</topic><topic>charge scheduling</topic><topic>Computer simulation</topic><topic>Data processing</topic><topic>distribution transformer</topic><topic>Driver behavior</topic><topic>Electric vehicles</topic><topic>Embedded systems</topic><topic>Fuzzy logic</topic><topic>Fuzzy systems</topic><topic>Load</topic><topic>Load distribution</topic><topic>Mitigation</topic><topic>Monte Carlo simulation</topic><topic>Peak load</topic><topic>Residential areas</topic><topic>Smart buildings</topic><topic>Stress concentration</topic><topic>Voltage</topic><topic>Voltage stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurniawan, Teguh</creatorcontrib><creatorcontrib>Baguley, Craig A.</creatorcontrib><creatorcontrib>Madawala, Udaya K.</creatorcontrib><creatorcontrib>Suwarno, Suwarno</creatorcontrib><creatorcontrib>Hariyanto, Nanang</creatorcontrib><creatorcontrib>Adianto, Yuana</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurniawan, Teguh</au><au>Baguley, Craig A.</au><au>Madawala, Udaya K.</au><au>Suwarno, Suwarno</au><au>Hariyanto, Nanang</au><au>Adianto, Yuana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Electric Vehicle Charge Scheduling Approach Suited to Local and Supplying Distribution Transformers</atitle><jtitle>Energies (Basel)</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>13</volume><issue>13</issue><spage>3486</spage><pages>3486-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>Distribution networks with high electric vehicle (EV) penetration levels can experience transformer overloading and voltage instability issues. A charge scheduling approach is proposed to mitigate against these issues that suits smart home settings in residential areas. It comprises measurement systems located at distribution transformers that communicate directly with fuzzy logic controller (FLC) systems embedded within EV supply equipment (EVSE). This realizes a reduction in data processing requirements compared to more centralized control approaches, which is advantageous for distribution networks with large numbers of transformers and EV scheduling requests. A case study employing the proposed approach is presented. Realistic driver behavior patterns, EV types, and multivariate probabilistic modeling were used to estimate EV charging demands, daily travel mileage, and plug-in times. A Monte Carlo simulation approach was developed to obtain EV charging loads. The effectiveness of mitigation in terms of reducing distribution transformer peak load levels and losses, as well as improving voltage stability is demonstrated for a distribution network in Jakarta, Indonesia.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en13133486</doi><orcidid>https://orcid.org/0000-0002-3618-963X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1073
ispartof Energies (Basel), 2020-07, Vol.13 (13), p.3486
issn 1996-1073
1996-1073
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_60c54a90802641f3a4cf1131ade5eb3d
source Publicly Available Content (ProQuest)
subjects Automobiles
Case studies
charge scheduling
Computer simulation
Data processing
distribution transformer
Driver behavior
Electric vehicles
Embedded systems
Fuzzy logic
Fuzzy systems
Load
Load distribution
Mitigation
Monte Carlo simulation
Peak load
Residential areas
Smart buildings
Stress concentration
Voltage
Voltage stability
title An Electric Vehicle Charge Scheduling Approach Suited to Local and Supplying Distribution Transformers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A07%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Electric%20Vehicle%20Charge%20Scheduling%20Approach%20Suited%20to%20Local%20and%20Supplying%20Distribution%20Transformers&rft.jtitle=Energies%20(Basel)&rft.au=Kurniawan,%20Teguh&rft.date=2020-07-01&rft.volume=13&rft.issue=13&rft.spage=3486&rft.pages=3486-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en13133486&rft_dat=%3Cproquest_doaj_%3E2422293811%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-d8c9dfeca2aef767773f5ad54cd0fd38b1c306c25851689364f7dafb8202bb993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2422293811&rft_id=info:pmid/&rfr_iscdi=true