Loading…
Effect of Nd and Mn Co-Doping on Dielectric, Ferroelectric and Photovoltaic Properties of BiFeO3
Bi1−xNdxFe0.99Mn0.01O3 (BNFMO, x = 0.00~0.20) films were epitaxially grown on Nb:SrTiO3 (001) substrates using pulsed laser deposition. It was found that the Nd-doping concentration has a great impact on the surface morphology, crystal structure, and electrical properties. BNFMO thin film with low N...
Saved in:
Published in: | Crystals (Basel) 2022-04, Vol.12 (4), p.500 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Bi1−xNdxFe0.99Mn0.01O3 (BNFMO, x = 0.00~0.20) films were epitaxially grown on Nb:SrTiO3 (001) substrates using pulsed laser deposition. It was found that the Nd-doping concentration has a great impact on the surface morphology, crystal structure, and electrical properties. BNFMO thin film with low Nd-doping concentration (≤16%) crystallizes into a rhombohedral structure, while the high Nd-doping (>16%) will lead to the formation of an orthogonal structure. Furthermore, to eliminate the resistive switching (RS) effect, a positive-up–negative-down (PUND) measurement was applied on two devices in series. The remnant polarization experiences an increase with the Nd-doping concentration increasing to 16%, then drops down with the further increased concentration of Nd. Finally, the ferroelectric photovoltaic effect is also regulated by the ferroelectric polarization, and the maximum photocurrent of 1758 μA/cm2 was obtained in Bi0.84Nd0.16Fe0.99Mn0.01O3 thin film. BNFMO films show great potential for ferroelectric and photovoltaic applications. |
---|---|
ISSN: | 2073-4352 2073-4352 |
DOI: | 10.3390/cryst12040500 |