Loading…
Dataset of numerically-generated interfaces of Newtonian jets in CIJ regime
The so-called Rayleigh-Plateau instability of fluid jets has been widely studied and is extensively used in the Continuous InkJet (CIJ) printing process. The present dataset contains the numerically-generated interfaces of Newtonian fluids jets in CIJ jetting conditions for low to moderately high st...
Saved in:
Published in: | Data in brief 2022-06, Vol.42, p.108215-108215, Article 108215 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The so-called Rayleigh-Plateau instability of fluid jets has been widely studied and is extensively used in the Continuous InkJet (CIJ) printing process. The present dataset contains the numerically-generated interfaces of Newtonian fluids jets in CIJ jetting conditions for low to moderately high stimulation amplitudes. We used Basilisk, an open-source Computational Fluid Dynamics (CFD) software specialized in multiphase flow to compute thousands of jets of fluids for Reynolds numbers ranging from 100 to 1000. The dataset gives raw data of CFD simulations liquid-air interfaces, for each Reynolds – stimulation amplitude pair. The present 10 GB dataset contains ≈110000 interfaces which allows to use novel machine learning and deep-learning approaches to explore jet morphologies evolution that can’t be addressed with the classical Rayleigh’s theory. |
---|---|
ISSN: | 2352-3409 2352-3409 |
DOI: | 10.1016/j.dib.2022.108215 |