Loading…

Predicting the inhibition efficiencies of magnesium dissolution modulators using sparse machine learning models

The degradation behaviour of magnesium and its alloys can be tuned by small organic molecules. However, an automatic identification of effective organic additives within the vast chemical space of potential compounds needs sophisticated tools. Herein, we propose two systematic approaches of sparse f...

Full description

Saved in:
Bibliographic Details
Published in:npj computational materials 2021-12, Vol.7 (1), p.1-9, Article 193
Main Authors: Schiessler, Elisabeth J., Würger, Tim, Lamaka, Sviatlana V., Meißner, Robert H., Cyron, Christian J., Zheludkevich, Mikhail L., Feiler, Christian, Aydin, Roland C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c429t-26d721c46d1571e55c7466b072d0757db6a9ad8483b5b024d35ce35f4fbf23c33
cites cdi_FETCH-LOGICAL-c429t-26d721c46d1571e55c7466b072d0757db6a9ad8483b5b024d35ce35f4fbf23c33
container_end_page 9
container_issue 1
container_start_page 1
container_title npj computational materials
container_volume 7
creator Schiessler, Elisabeth J.
Würger, Tim
Lamaka, Sviatlana V.
Meißner, Robert H.
Cyron, Christian J.
Zheludkevich, Mikhail L.
Feiler, Christian
Aydin, Roland C.
description The degradation behaviour of magnesium and its alloys can be tuned by small organic molecules. However, an automatic identification of effective organic additives within the vast chemical space of potential compounds needs sophisticated tools. Herein, we propose two systematic approaches of sparse feature selection for identifying molecular descriptors that are most relevant for the corrosion inhibition efficiency of chemical compounds. One is based on the classical statistical tool of analysis of variance, the other one based on random forests. We demonstrate how both can—when combined with deep neural networks—help to predict the corrosion inhibition efficiencies of chemical compounds for the magnesium alloy ZE41. In particular, we demonstrate that this framework outperforms predictions relying on a random selection of molecular descriptors. Finally, we point out how autoencoders could be used in the future to enable even more accurate automated predictions of corrosion inhibition efficiencies.
doi_str_mv 10.1038/s41524-021-00658-7
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_60d8828f3c82490391add887e60612fd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_60d8828f3c82490391add887e60612fd</doaj_id><sourcerecordid>2604981184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-26d721c46d1571e55c7466b072d0757db6a9ad8483b5b024d35ce35f4fbf23c33</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhSMEElXpC7CK1HXg-t9ZVhW0lSqVBawtx76e8ShjD3ay4O3xTBBlxcK61tF3jq17uu4jgU8EmP5cORGUD0DJACCFHtSb7oqCUAMbJbz95_6-u6n1AABkpJpyuOryt4I-uiWmXb_ssY9pH6e4xJx6DCG6iKmd2ufQH-0uYY3rsfex1jyvF-qY_TrbJZfar_WcUk-2VGy028eE_Yy2pLPeQJzrh-5dsHPFmz_zuvvx9cv3-8fh-eXh6f7ueXCcjstApVeUOC49EYqgEE5xKSdQ1IMSyk_SjtZrrtkkJqDcM-GQicDDFChzjF13T1uuz_ZgTiUebfllso3mIuSyM7Ys0c1oJHitqQ7MtZWMwEZifVMUSpCEBt-ybresU8k_V6yLOeS1pPZ9QyXwUROieaPoRrmSay0Y_r5KwJx7MltPpvVkLj0Z1UxsM9UGpx2W1-j_uH4DvLWWZQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604981184</pqid></control><display><type>article</type><title>Predicting the inhibition efficiencies of magnesium dissolution modulators using sparse machine learning models</title><source>Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Schiessler, Elisabeth J. ; Würger, Tim ; Lamaka, Sviatlana V. ; Meißner, Robert H. ; Cyron, Christian J. ; Zheludkevich, Mikhail L. ; Feiler, Christian ; Aydin, Roland C.</creator><creatorcontrib>Schiessler, Elisabeth J. ; Würger, Tim ; Lamaka, Sviatlana V. ; Meißner, Robert H. ; Cyron, Christian J. ; Zheludkevich, Mikhail L. ; Feiler, Christian ; Aydin, Roland C.</creatorcontrib><description>The degradation behaviour of magnesium and its alloys can be tuned by small organic molecules. However, an automatic identification of effective organic additives within the vast chemical space of potential compounds needs sophisticated tools. Herein, we propose two systematic approaches of sparse feature selection for identifying molecular descriptors that are most relevant for the corrosion inhibition efficiency of chemical compounds. One is based on the classical statistical tool of analysis of variance, the other one based on random forests. We demonstrate how both can—when combined with deep neural networks—help to predict the corrosion inhibition efficiencies of chemical compounds for the magnesium alloy ZE41. In particular, we demonstrate that this framework outperforms predictions relying on a random selection of molecular descriptors. Finally, we point out how autoencoders could be used in the future to enable even more accurate automated predictions of corrosion inhibition efficiencies.</description><identifier>ISSN: 2057-3960</identifier><identifier>EISSN: 2057-3960</identifier><identifier>DOI: 10.1038/s41524-021-00658-7</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1034/1037 ; 639/638/563 ; Additives ; Artificial neural networks ; Characterization and Evaluation of Materials ; Chemical compounds ; Chemistry and Materials Science ; Computational Intelligence ; Corrosion ; Learning algorithms ; Machine learning ; Magnesium ; Magnesium base alloys ; Materials Science ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Modulators ; Neural networks ; Organic chemistry ; Theoretical ; Variance analysis</subject><ispartof>npj computational materials, 2021-12, Vol.7 (1), p.1-9, Article 193</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-26d721c46d1571e55c7466b072d0757db6a9ad8483b5b024d35ce35f4fbf23c33</citedby><cites>FETCH-LOGICAL-c429t-26d721c46d1571e55c7466b072d0757db6a9ad8483b5b024d35ce35f4fbf23c33</cites><orcidid>0000-0003-0346-0371 ; 0000-0001-5520-8325 ; 0000-0003-4312-7629 ; 0000-0003-1926-114X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2604981184/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2604981184?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Schiessler, Elisabeth J.</creatorcontrib><creatorcontrib>Würger, Tim</creatorcontrib><creatorcontrib>Lamaka, Sviatlana V.</creatorcontrib><creatorcontrib>Meißner, Robert H.</creatorcontrib><creatorcontrib>Cyron, Christian J.</creatorcontrib><creatorcontrib>Zheludkevich, Mikhail L.</creatorcontrib><creatorcontrib>Feiler, Christian</creatorcontrib><creatorcontrib>Aydin, Roland C.</creatorcontrib><title>Predicting the inhibition efficiencies of magnesium dissolution modulators using sparse machine learning models</title><title>npj computational materials</title><addtitle>npj Comput Mater</addtitle><description>The degradation behaviour of magnesium and its alloys can be tuned by small organic molecules. However, an automatic identification of effective organic additives within the vast chemical space of potential compounds needs sophisticated tools. Herein, we propose two systematic approaches of sparse feature selection for identifying molecular descriptors that are most relevant for the corrosion inhibition efficiency of chemical compounds. One is based on the classical statistical tool of analysis of variance, the other one based on random forests. We demonstrate how both can—when combined with deep neural networks—help to predict the corrosion inhibition efficiencies of chemical compounds for the magnesium alloy ZE41. In particular, we demonstrate that this framework outperforms predictions relying on a random selection of molecular descriptors. Finally, we point out how autoencoders could be used in the future to enable even more accurate automated predictions of corrosion inhibition efficiencies.</description><subject>639/301/1034/1037</subject><subject>639/638/563</subject><subject>Additives</subject><subject>Artificial neural networks</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical compounds</subject><subject>Chemistry and Materials Science</subject><subject>Computational Intelligence</subject><subject>Corrosion</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Magnesium</subject><subject>Magnesium base alloys</subject><subject>Materials Science</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Modulators</subject><subject>Neural networks</subject><subject>Organic chemistry</subject><subject>Theoretical</subject><subject>Variance analysis</subject><issn>2057-3960</issn><issn>2057-3960</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc1u1DAUhSMEElXpC7CK1HXg-t9ZVhW0lSqVBawtx76e8ShjD3ay4O3xTBBlxcK61tF3jq17uu4jgU8EmP5cORGUD0DJACCFHtSb7oqCUAMbJbz95_6-u6n1AABkpJpyuOryt4I-uiWmXb_ssY9pH6e4xJx6DCG6iKmd2ufQH-0uYY3rsfex1jyvF-qY_TrbJZfar_WcUk-2VGy028eE_Yy2pLPeQJzrh-5dsHPFmz_zuvvx9cv3-8fh-eXh6f7ueXCcjstApVeUOC49EYqgEE5xKSdQ1IMSyk_SjtZrrtkkJqDcM-GQicDDFChzjF13T1uuz_ZgTiUebfllso3mIuSyM7Ys0c1oJHitqQ7MtZWMwEZifVMUSpCEBt-ybresU8k_V6yLOeS1pPZ9QyXwUROieaPoRrmSay0Y_r5KwJx7MltPpvVkLj0Z1UxsM9UGpx2W1-j_uH4DvLWWZQ</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Schiessler, Elisabeth J.</creator><creator>Würger, Tim</creator><creator>Lamaka, Sviatlana V.</creator><creator>Meißner, Robert H.</creator><creator>Cyron, Christian J.</creator><creator>Zheludkevich, Mikhail L.</creator><creator>Feiler, Christian</creator><creator>Aydin, Roland C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0346-0371</orcidid><orcidid>https://orcid.org/0000-0001-5520-8325</orcidid><orcidid>https://orcid.org/0000-0003-4312-7629</orcidid><orcidid>https://orcid.org/0000-0003-1926-114X</orcidid></search><sort><creationdate>20211201</creationdate><title>Predicting the inhibition efficiencies of magnesium dissolution modulators using sparse machine learning models</title><author>Schiessler, Elisabeth J. ; Würger, Tim ; Lamaka, Sviatlana V. ; Meißner, Robert H. ; Cyron, Christian J. ; Zheludkevich, Mikhail L. ; Feiler, Christian ; Aydin, Roland C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-26d721c46d1571e55c7466b072d0757db6a9ad8483b5b024d35ce35f4fbf23c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/301/1034/1037</topic><topic>639/638/563</topic><topic>Additives</topic><topic>Artificial neural networks</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical compounds</topic><topic>Chemistry and Materials Science</topic><topic>Computational Intelligence</topic><topic>Corrosion</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Magnesium</topic><topic>Magnesium base alloys</topic><topic>Materials Science</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Modulators</topic><topic>Neural networks</topic><topic>Organic chemistry</topic><topic>Theoretical</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schiessler, Elisabeth J.</creatorcontrib><creatorcontrib>Würger, Tim</creatorcontrib><creatorcontrib>Lamaka, Sviatlana V.</creatorcontrib><creatorcontrib>Meißner, Robert H.</creatorcontrib><creatorcontrib>Cyron, Christian J.</creatorcontrib><creatorcontrib>Zheludkevich, Mikhail L.</creatorcontrib><creatorcontrib>Feiler, Christian</creatorcontrib><creatorcontrib>Aydin, Roland C.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>npj computational materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schiessler, Elisabeth J.</au><au>Würger, Tim</au><au>Lamaka, Sviatlana V.</au><au>Meißner, Robert H.</au><au>Cyron, Christian J.</au><au>Zheludkevich, Mikhail L.</au><au>Feiler, Christian</au><au>Aydin, Roland C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting the inhibition efficiencies of magnesium dissolution modulators using sparse machine learning models</atitle><jtitle>npj computational materials</jtitle><stitle>npj Comput Mater</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>7</volume><issue>1</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><artnum>193</artnum><issn>2057-3960</issn><eissn>2057-3960</eissn><abstract>The degradation behaviour of magnesium and its alloys can be tuned by small organic molecules. However, an automatic identification of effective organic additives within the vast chemical space of potential compounds needs sophisticated tools. Herein, we propose two systematic approaches of sparse feature selection for identifying molecular descriptors that are most relevant for the corrosion inhibition efficiency of chemical compounds. One is based on the classical statistical tool of analysis of variance, the other one based on random forests. We demonstrate how both can—when combined with deep neural networks—help to predict the corrosion inhibition efficiencies of chemical compounds for the magnesium alloy ZE41. In particular, we demonstrate that this framework outperforms predictions relying on a random selection of molecular descriptors. Finally, we point out how autoencoders could be used in the future to enable even more accurate automated predictions of corrosion inhibition efficiencies.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41524-021-00658-7</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0346-0371</orcidid><orcidid>https://orcid.org/0000-0001-5520-8325</orcidid><orcidid>https://orcid.org/0000-0003-4312-7629</orcidid><orcidid>https://orcid.org/0000-0003-1926-114X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2057-3960
ispartof npj computational materials, 2021-12, Vol.7 (1), p.1-9, Article 193
issn 2057-3960
2057-3960
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_60d8828f3c82490391add887e60612fd
source Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/301/1034/1037
639/638/563
Additives
Artificial neural networks
Characterization and Evaluation of Materials
Chemical compounds
Chemistry and Materials Science
Computational Intelligence
Corrosion
Learning algorithms
Machine learning
Magnesium
Magnesium base alloys
Materials Science
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Modeling and Industrial Mathematics
Modulators
Neural networks
Organic chemistry
Theoretical
Variance analysis
title Predicting the inhibition efficiencies of magnesium dissolution modulators using sparse machine learning models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A44%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20the%20inhibition%20efficiencies%20of%20magnesium%20dissolution%20modulators%20using%20sparse%20machine%20learning%20models&rft.jtitle=npj%20computational%20materials&rft.au=Schiessler,%20Elisabeth%20J.&rft.date=2021-12-01&rft.volume=7&rft.issue=1&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.artnum=193&rft.issn=2057-3960&rft.eissn=2057-3960&rft_id=info:doi/10.1038/s41524-021-00658-7&rft_dat=%3Cproquest_doaj_%3E2604981184%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-26d721c46d1571e55c7466b072d0757db6a9ad8483b5b024d35ce35f4fbf23c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2604981184&rft_id=info:pmid/&rfr_iscdi=true