Loading…
Inflation and Fractional Quantum Cosmology
The Wheeler–DeWitt equation for a flat and compact Friedmann–Lemaître–Robertson–Walker cosmology at the pre-inflation epoch is studied in the contexts of the standard and fractional quantum cosmology. Working within the semiclassical regime and applying the Wentzel-Kramers-Brillouin (WKB) approximat...
Saved in:
Published in: | Fractal and fractional 2022-11, Vol.6 (11), p.655 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c388t-703c472c1821d1c047884f74221006c2cff42aeadb98c8d3a173e5590e7a5c023 |
---|---|
cites | cdi_FETCH-LOGICAL-c388t-703c472c1821d1c047884f74221006c2cff42aeadb98c8d3a173e5590e7a5c023 |
container_end_page | |
container_issue | 11 |
container_start_page | 655 |
container_title | Fractal and fractional |
container_volume | 6 |
creator | Rasouli, Seyed Meraj Mousavi de Oliveira Costa, Emanuel W. Moniz, Paulo Jalalzadeh, Shahram |
description | The Wheeler–DeWitt equation for a flat and compact Friedmann–Lemaître–Robertson–Walker cosmology at the pre-inflation epoch is studied in the contexts of the standard and fractional quantum cosmology. Working within the semiclassical regime and applying the Wentzel-Kramers-Brillouin (WKB) approximation, we show that some fascinating consequences are obtained for our simple fractional scenario that are completely different from their corresponding standard counterparts: (i) The conventional de Sitter behavior of the inflationary universe for constant potential is replaced by a power-law inflation. (ii) The non-locality of the Riesz’s fractional derivative produces a power-law inflation that depends on the fractal dimension of the compact spatial section of space-time, independent of the energy scale of the inflaton. |
doi_str_mv | 10.3390/fractalfract6110655 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_60f58e4ec125464ea06574589bcd2d74</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_60f58e4ec125464ea06574589bcd2d74</doaj_id><sourcerecordid>2748274810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-703c472c1821d1c047884f74221006c2cff42aeadb98c8d3a173e5590e7a5c023</originalsourceid><addsrcrecordid>eNptUMtKA0EQHETBEPMFXha8Cas9r53ZowSjgYAIeh468wgbNjtxZveQv3eTiHjw0FRXU1RTRcgthQfOa3gMCW2P7QkqSqGS8oJMmARR8pFe_tmvySznLQAwVXMJakLul11osW9iV2DnisXRZCTYFu8Ddv2wK-Yx72IbN4cbchWwzX72g1PyuXj-mL-Wq7eX5fxpVVqudV8q4FYoZqlm1FELQmktghKMUYDKMhuCYOjRrWttteNIFfdS1uAVSguMT8ny7Osibs0-NTtMBxOxMadDTBuDqW9s600FQWovvKVMikp4HMMrIXW9to45JUavu7PXPsWvwefebOOQxnjZMCX0cSiMKn5W2RRzTj78fqVgjh2bfzrm31m4b8w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2748274810</pqid></control><display><type>article</type><title>Inflation and Fractional Quantum Cosmology</title><source>Publicly Available Content Database</source><creator>Rasouli, Seyed Meraj Mousavi ; de Oliveira Costa, Emanuel W. ; Moniz, Paulo ; Jalalzadeh, Shahram</creator><creatorcontrib>Rasouli, Seyed Meraj Mousavi ; de Oliveira Costa, Emanuel W. ; Moniz, Paulo ; Jalalzadeh, Shahram</creatorcontrib><description>The Wheeler–DeWitt equation for a flat and compact Friedmann–Lemaître–Robertson–Walker cosmology at the pre-inflation epoch is studied in the contexts of the standard and fractional quantum cosmology. Working within the semiclassical regime and applying the Wentzel-Kramers-Brillouin (WKB) approximation, we show that some fascinating consequences are obtained for our simple fractional scenario that are completely different from their corresponding standard counterparts: (i) The conventional de Sitter behavior of the inflationary universe for constant potential is replaced by a power-law inflation. (ii) The non-locality of the Riesz’s fractional derivative produces a power-law inflation that depends on the fractal dimension of the compact spatial section of space-time, independent of the energy scale of the inflaton.</description><identifier>ISSN: 2504-3110</identifier><identifier>EISSN: 2504-3110</identifier><identifier>DOI: 10.3390/fractalfract6110655</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Calculus ; Cosmology ; Fractal geometry ; fractional calculus ; fractional quantum cosmology ; inflation ; Inflation (cosmology) ; non-locality ; Power law ; Quantum field theory ; Spacetime ; Universe ; Wheeler–DeWitt equation</subject><ispartof>Fractal and fractional, 2022-11, Vol.6 (11), p.655</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-703c472c1821d1c047884f74221006c2cff42aeadb98c8d3a173e5590e7a5c023</citedby><cites>FETCH-LOGICAL-c388t-703c472c1821d1c047884f74221006c2cff42aeadb98c8d3a173e5590e7a5c023</cites><orcidid>0000-0003-4854-2960 ; 0000-0003-3455-1954 ; 0000-0002-4388-0445 ; 0000-0001-7170-8952</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2748274810/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2748274810?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Rasouli, Seyed Meraj Mousavi</creatorcontrib><creatorcontrib>de Oliveira Costa, Emanuel W.</creatorcontrib><creatorcontrib>Moniz, Paulo</creatorcontrib><creatorcontrib>Jalalzadeh, Shahram</creatorcontrib><title>Inflation and Fractional Quantum Cosmology</title><title>Fractal and fractional</title><description>The Wheeler–DeWitt equation for a flat and compact Friedmann–Lemaître–Robertson–Walker cosmology at the pre-inflation epoch is studied in the contexts of the standard and fractional quantum cosmology. Working within the semiclassical regime and applying the Wentzel-Kramers-Brillouin (WKB) approximation, we show that some fascinating consequences are obtained for our simple fractional scenario that are completely different from their corresponding standard counterparts: (i) The conventional de Sitter behavior of the inflationary universe for constant potential is replaced by a power-law inflation. (ii) The non-locality of the Riesz’s fractional derivative produces a power-law inflation that depends on the fractal dimension of the compact spatial section of space-time, independent of the energy scale of the inflaton.</description><subject>Calculus</subject><subject>Cosmology</subject><subject>Fractal geometry</subject><subject>fractional calculus</subject><subject>fractional quantum cosmology</subject><subject>inflation</subject><subject>Inflation (cosmology)</subject><subject>non-locality</subject><subject>Power law</subject><subject>Quantum field theory</subject><subject>Spacetime</subject><subject>Universe</subject><subject>Wheeler–DeWitt equation</subject><issn>2504-3110</issn><issn>2504-3110</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUMtKA0EQHETBEPMFXha8Cas9r53ZowSjgYAIeh468wgbNjtxZveQv3eTiHjw0FRXU1RTRcgthQfOa3gMCW2P7QkqSqGS8oJMmARR8pFe_tmvySznLQAwVXMJakLul11osW9iV2DnisXRZCTYFu8Ddv2wK-Yx72IbN4cbchWwzX72g1PyuXj-mL-Wq7eX5fxpVVqudV8q4FYoZqlm1FELQmktghKMUYDKMhuCYOjRrWttteNIFfdS1uAVSguMT8ny7Osibs0-NTtMBxOxMadDTBuDqW9s600FQWovvKVMikp4HMMrIXW9to45JUavu7PXPsWvwefebOOQxnjZMCX0cSiMKn5W2RRzTj78fqVgjh2bfzrm31m4b8w</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Rasouli, Seyed Meraj Mousavi</creator><creator>de Oliveira Costa, Emanuel W.</creator><creator>Moniz, Paulo</creator><creator>Jalalzadeh, Shahram</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4854-2960</orcidid><orcidid>https://orcid.org/0000-0003-3455-1954</orcidid><orcidid>https://orcid.org/0000-0002-4388-0445</orcidid><orcidid>https://orcid.org/0000-0001-7170-8952</orcidid></search><sort><creationdate>20221101</creationdate><title>Inflation and Fractional Quantum Cosmology</title><author>Rasouli, Seyed Meraj Mousavi ; de Oliveira Costa, Emanuel W. ; Moniz, Paulo ; Jalalzadeh, Shahram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-703c472c1821d1c047884f74221006c2cff42aeadb98c8d3a173e5590e7a5c023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Calculus</topic><topic>Cosmology</topic><topic>Fractal geometry</topic><topic>fractional calculus</topic><topic>fractional quantum cosmology</topic><topic>inflation</topic><topic>Inflation (cosmology)</topic><topic>non-locality</topic><topic>Power law</topic><topic>Quantum field theory</topic><topic>Spacetime</topic><topic>Universe</topic><topic>Wheeler–DeWitt equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rasouli, Seyed Meraj Mousavi</creatorcontrib><creatorcontrib>de Oliveira Costa, Emanuel W.</creatorcontrib><creatorcontrib>Moniz, Paulo</creatorcontrib><creatorcontrib>Jalalzadeh, Shahram</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Fractal and fractional</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rasouli, Seyed Meraj Mousavi</au><au>de Oliveira Costa, Emanuel W.</au><au>Moniz, Paulo</au><au>Jalalzadeh, Shahram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inflation and Fractional Quantum Cosmology</atitle><jtitle>Fractal and fractional</jtitle><date>2022-11-01</date><risdate>2022</risdate><volume>6</volume><issue>11</issue><spage>655</spage><pages>655-</pages><issn>2504-3110</issn><eissn>2504-3110</eissn><abstract>The Wheeler–DeWitt equation for a flat and compact Friedmann–Lemaître–Robertson–Walker cosmology at the pre-inflation epoch is studied in the contexts of the standard and fractional quantum cosmology. Working within the semiclassical regime and applying the Wentzel-Kramers-Brillouin (WKB) approximation, we show that some fascinating consequences are obtained for our simple fractional scenario that are completely different from their corresponding standard counterparts: (i) The conventional de Sitter behavior of the inflationary universe for constant potential is replaced by a power-law inflation. (ii) The non-locality of the Riesz’s fractional derivative produces a power-law inflation that depends on the fractal dimension of the compact spatial section of space-time, independent of the energy scale of the inflaton.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/fractalfract6110655</doi><orcidid>https://orcid.org/0000-0003-4854-2960</orcidid><orcidid>https://orcid.org/0000-0003-3455-1954</orcidid><orcidid>https://orcid.org/0000-0002-4388-0445</orcidid><orcidid>https://orcid.org/0000-0001-7170-8952</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2504-3110 |
ispartof | Fractal and fractional, 2022-11, Vol.6 (11), p.655 |
issn | 2504-3110 2504-3110 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_60f58e4ec125464ea06574589bcd2d74 |
source | Publicly Available Content Database |
subjects | Calculus Cosmology Fractal geometry fractional calculus fractional quantum cosmology inflation Inflation (cosmology) non-locality Power law Quantum field theory Spacetime Universe Wheeler–DeWitt equation |
title | Inflation and Fractional Quantum Cosmology |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A43%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inflation%20and%20Fractional%20Quantum%20Cosmology&rft.jtitle=Fractal%20and%20fractional&rft.au=Rasouli,%20Seyed%20Meraj%20Mousavi&rft.date=2022-11-01&rft.volume=6&rft.issue=11&rft.spage=655&rft.pages=655-&rft.issn=2504-3110&rft.eissn=2504-3110&rft_id=info:doi/10.3390/fractalfract6110655&rft_dat=%3Cproquest_doaj_%3E2748274810%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-703c472c1821d1c047884f74221006c2cff42aeadb98c8d3a173e5590e7a5c023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2748274810&rft_id=info:pmid/&rfr_iscdi=true |