Loading…

Highlighting the potential utility of MBP crystallization chaperone for Arabidopsis BIL1/BZR1 transcription factor-DNA complex

The maltose-binding protein (MBP) fusion tag is one of the most commonly utilized crystallization chaperones for proteins of interest. Recently, this MBP-mediated crystallization technique was adapted to Arabidopsis thaliana (At) BRZ-INSENSITIVE-LONG (BIL1)/BRASSINAZOLE-RESISTANT (BZR1), a member of...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2021-02, Vol.11 (1), p.3879-3879, Article 3879
Main Authors: Nosaki, Shohei, Terada, Tohru, Nakamura, Akira, Hirabayashi, Kei, Xu, Yuqun, Bui, Thi Bao Chau, Nakano, Takeshi, Tanokura, Masaru, Miyakawa, Takuya
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The maltose-binding protein (MBP) fusion tag is one of the most commonly utilized crystallization chaperones for proteins of interest. Recently, this MBP-mediated crystallization technique was adapted to Arabidopsis thaliana (At) BRZ-INSENSITIVE-LONG (BIL1)/BRASSINAZOLE-RESISTANT (BZR1), a member of the plant-specific BZR TFs, and revealed the first structure of AtBIL1/BZR1 in complex with target DNA. However, it is unclear how the fused MBP affects the structural features of the AtBIL1/BZR1-DNA complex. In the present study, we highlight the potential utility of the MBP crystallization chaperone by comparing it with the crystallization of unfused AtBIL1/BZR1 in complex with DNA. Furthermore, we assessed the validity of the MBP-fused AtBIL1/BZR1-DNA structure by performing detailed dissection of crystal packings and molecular dynamics (MD) simulations with the removal of the MBP chaperone. Our MD simulations define the structural basis underlying the AtBIL1/BZR1-DNA assembly and DNA binding specificity by AtBIL1/BZR1. The methodology employed in this study, the combination of MBP-mediated crystallization and MD simulation, demonstrates promising capabilities in deciphering the protein-DNA recognition code.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-83532-2