Loading…

Meiotic arrest with roscovitine and sexual maturity improve competence of mouse oocytes by regulating expression of competence-related genes

We have studied the mechanisms by which meiotic arrest maintenance (MAM) with roscovitine, female sexual maturity, and the surrounded nucleoli (SN) chromatin configuration improve the competence of mouse oocytes by observing the expression of oocyte competence-related genes in non-surrounded nucleol...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Reproduction and Development 2021, Vol.67(2), pp.115-122
Main Authors: CHENG, Hao, SUN, Xue, CHEN, Fei, PAN, Liu-Zhu, WANG, Guo-Liang, YUAN, Hong-Jie, CHANG, Zhong-Le, TAN, Jing-He
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have studied the mechanisms by which meiotic arrest maintenance (MAM) with roscovitine, female sexual maturity, and the surrounded nucleoli (SN) chromatin configuration improve the competence of mouse oocytes by observing the expression of oocyte competence-related genes in non-surrounded nucleoli (NSN) and SN oocytes from prepubertal and adult mice following maturation with or without MAM. The results demonstrated that MAM with roscovitine significantly improved the developmental potential of adult SN and prepubertal NSN oocytes, but had no effect on that of prepubertal SN oocytes. Without MAM, while 40% of the 2-cell embryos derived from prepubertal SN oocytes developed into 4-cell embryos, none of the 2-cell embryos derived from prepubertal NSN oocytes did, and while 42% of the 4-cell embryos derived from adult SN oocytes developed into blastocysts, only 1% of the 4-cell embryos derived from prepubertal SN oocytes developed into blastocysts. Furthermore, MAM with roscovitine, SN configuration, and female sexual maturity significantly increased the mRNA levels of competence-beneficial genes and decreased those of competence-detrimental genes. In conclusion, our results suggest that MAM with roscovitine, SN chromatin configuration, and female sexual maturity improve oocyte competence by regulating the expression of competence-related genes, suggesting that Oct4, Stella, Mater, Zar1, Mapk8, and Bcl2 are oocyte competence-beneficial genes, whereas Foxj2, Ship1, and Bax are competence-detrimental genes.
ISSN:0916-8818
1348-4400
DOI:10.1262/jrd.2020-142