Loading…
Weyl anomaly induced Fermi condensation and holography
A bstract Recently it is found that, due to Weyl anomaly, a background scalar field induces a non-trivial Fermi condensation for theories with Yukawa couplings. For simplicity, the paper consider only scalar type Yukawa coupling and, in the BCFT case, only for a specific boundary condition. In these...
Saved in:
Published in: | The journal of high energy physics 2020-08, Vol.2020 (8), p.1-31, Article 134 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A
bstract
Recently it is found that, due to Weyl anomaly, a background scalar field induces a non-trivial Fermi condensation for theories with Yukawa couplings. For simplicity, the paper consider only scalar type Yukawa coupling and, in the BCFT case, only for a specific boundary condition. In these cases, the Weyl anomaly takes on a simple special form. In this paper, we generalize the results to more general situations. First, we obtain general expressions of Weyl anomaly due to a background scalar and pseudo scalar field in general 4d BCFTs. Then, we derive the general form of Fermi condensation from the Weyl anomaly. It is remarkable that, in general, Fermi condensation is non-zero even if there was not a non-vanishing scalar field background. Finally, we verify our results with free BCFT with Yukawa coupling to scalar and pseudo-scalar background potential with general chiral bag boundary condition and with holographic BCFT. In particular, we obtain the shape and curvature dependence of the Fermi condensate from the holographic one point function. |
---|---|
ISSN: | 1029-8479 1029-8479 |
DOI: | 10.1007/JHEP08(2020)134 |