Loading…
COVID-19 Infection Percentage Estimation from Computed Tomography Scans: Results and Insights from the International Per-COVID-19 Challenge
COVID-19 analysis from medical imaging is an important task that has been intensively studied in the last years due to the spread of the COVID-19 pandemic. In fact, medical imaging has often been used as a complementary or main tool to recognize the infected persons. On the other hand, medical imagi...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2024-02, Vol.24 (5), p.1557 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c531t-31c98f0c3686163683581b5a94ed5e786707e5d6051a01b002e588691116ac4f3 |
container_end_page | |
container_issue | 5 |
container_start_page | 1557 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 24 |
creator | Bougourzi, Fares Distante, Cosimo Dornaika, Fadi Taleb-Ahmed, Abdelmalik Hadid, Abdenour Chaudhary, Suman Yang, Wanting Qiang, Yan Anwar, Talha Breaban, Mihaela Elena Hsu, Chih-Chung Tai, Shen-Chieh Chen, Shao-Ning Tricarico, Davide Chaudhry, Hafiza Ayesha Hoor Fiandrotti, Attilio Grangetto, Marco Spatafora, Maria Ausilia Napoli Ortis, Alessandro Battiato, Sebastiano |
description | COVID-19 analysis from medical imaging is an important task that has been intensively studied in the last years due to the spread of the COVID-19 pandemic. In fact, medical imaging has often been used as a complementary or main tool to recognize the infected persons. On the other hand, medical imaging has the ability to provide more details about COVID-19 infection, including its severity and spread, which makes it possible to evaluate the infection and follow-up the patient's state. CT scans are the most informative tool for COVID-19 infection, where the evaluation of COVID-19 infection is usually performed through infection segmentation. However, segmentation is a tedious task that requires much effort and time from expert radiologists. To deal with this limitation, an efficient framework for estimating COVID-19 infection as a regression task is proposed. The goal of the Per-COVID-19 challenge is to test the efficiency of modern deep learning methods on COVID-19 infection percentage estimation (CIPE) from CT scans. Participants had to develop an efficient deep learning approach that can learn from noisy data. In addition, participants had to cope with many challenges, including those related to COVID-19 infection complexity and crossdataset scenarios. This paper provides an overview of the COVID-19 infection percentage estimation challenge (Per-COVID-19) held at MIA-COVID-2022. Details of the competition data, challenges, and evaluation metrics are presented. The best performing approaches and their results are described and discussed. |
doi_str_mv | 10.3390/s24051557 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_61747d33a1aa4021bff9fb45b8da2629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A786439432</galeid><doaj_id>oai_doaj_org_article_61747d33a1aa4021bff9fb45b8da2629</doaj_id><sourcerecordid>A786439432</sourcerecordid><originalsourceid>FETCH-LOGICAL-c531t-31c98f0c3686163683581b5a94ed5e786707e5d6051a01b002e588691116ac4f3</originalsourceid><addsrcrecordid>eNptUstu1DAUjRCIlsKCH0CR2MAixe_YbNBoKHSkkYqgsLUc5-YxSuKpnVTqN_DTODPD0FbIkh_H557rc32T5DVG55Qq9CEQhjjmPH-SnGJGWCYJQU_v7U-SFyFsECKUUvk8OaGS5Rwpcpr8Xl79Wn3OsEpXQwV2bN2QfgNvYRhNDelFGNve7NDKuz5dun47jVCm1653tTfb5i79Yc0QPqbfIUzdGFIzlFErtHUTD7ugsYGIjOCHnZLp5gzZMfGyMV0HQw0vk2eV6QK8Oqxnyc8vF9fLy2x99XW1XKwzyykeM4qtkhWyVEiBRZwpl7jgRjEoOeRS5CgHXopYEoNwEV0Dl1IojLEwllX0LFntdUtnNnrro0N_p51p9Q5wvtbGj63tQAucs7yk1GBjGCK4qCpVFYwXsjREEBW1Pu21tlPRQznXzZvugejDm6FtdO1uNUaKMslIVHi_V2gexV0u1nrGEOOEKYVvceS-O2Tz7maCMOq-DRa6zgzgpqCJ4kJILpiM1LePqBs3xR_odiyuYnql_rFqE922Q-XiI-0sqhexkowqRucnnv-HFUcJfWvdAFUb8QcBB0_WuxA8VEdjGOm5ZfWxZSP3zf0KHpl_e5T-Ac3G4c8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2955909399</pqid></control><display><type>article</type><title>COVID-19 Infection Percentage Estimation from Computed Tomography Scans: Results and Insights from the International Per-COVID-19 Challenge</title><source>PMC (PubMed Central)</source><source>Publicly Available Content (ProQuest)</source><creator>Bougourzi, Fares ; Distante, Cosimo ; Dornaika, Fadi ; Taleb-Ahmed, Abdelmalik ; Hadid, Abdenour ; Chaudhary, Suman ; Yang, Wanting ; Qiang, Yan ; Anwar, Talha ; Breaban, Mihaela Elena ; Hsu, Chih-Chung ; Tai, Shen-Chieh ; Chen, Shao-Ning ; Tricarico, Davide ; Chaudhry, Hafiza Ayesha Hoor ; Fiandrotti, Attilio ; Grangetto, Marco ; Spatafora, Maria Ausilia Napoli ; Ortis, Alessandro ; Battiato, Sebastiano</creator><creatorcontrib>Bougourzi, Fares ; Distante, Cosimo ; Dornaika, Fadi ; Taleb-Ahmed, Abdelmalik ; Hadid, Abdenour ; Chaudhary, Suman ; Yang, Wanting ; Qiang, Yan ; Anwar, Talha ; Breaban, Mihaela Elena ; Hsu, Chih-Chung ; Tai, Shen-Chieh ; Chen, Shao-Ning ; Tricarico, Davide ; Chaudhry, Hafiza Ayesha Hoor ; Fiandrotti, Attilio ; Grangetto, Marco ; Spatafora, Maria Ausilia Napoli ; Ortis, Alessandro ; Battiato, Sebastiano</creatorcontrib><description>COVID-19 analysis from medical imaging is an important task that has been intensively studied in the last years due to the spread of the COVID-19 pandemic. In fact, medical imaging has often been used as a complementary or main tool to recognize the infected persons. On the other hand, medical imaging has the ability to provide more details about COVID-19 infection, including its severity and spread, which makes it possible to evaluate the infection and follow-up the patient's state. CT scans are the most informative tool for COVID-19 infection, where the evaluation of COVID-19 infection is usually performed through infection segmentation. However, segmentation is a tedious task that requires much effort and time from expert radiologists. To deal with this limitation, an efficient framework for estimating COVID-19 infection as a regression task is proposed. The goal of the Per-COVID-19 challenge is to test the efficiency of modern deep learning methods on COVID-19 infection percentage estimation (CIPE) from CT scans. Participants had to develop an efficient deep learning approach that can learn from noisy data. In addition, participants had to cope with many challenges, including those related to COVID-19 infection complexity and crossdataset scenarios. This paper provides an overview of the COVID-19 infection percentage estimation challenge (Per-COVID-19) held at MIA-COVID-2022. Details of the competition data, challenges, and evaluation metrics are presented. The best performing approaches and their results are described and discussed.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s24051557</identifier><identifier>PMID: 38475092</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Artificial intelligence ; Benchmarking ; Computer Science ; convolutional neural network ; COVID-19 ; Datasets ; Deep learning ; Diagnostic imaging ; Emerging diseases ; Health aspects ; Human health and pathology ; Humans ; Infection ; Infections ; Infectious diseases ; Learning strategies ; Life Sciences ; Machine Learning ; Medical Imaging ; Medical imaging equipment ; Pandemics ; Per-COVID-19 ; Performance evaluation ; Pulmonology and respiratory tract ; Radionuclide Imaging ; segmentation ; Tomography, X-Ray Computed ; transformer</subject><ispartof>Sensors (Basel, Switzerland), 2024-02, Vol.24 (5), p.1557</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c531t-31c98f0c3686163683581b5a94ed5e786707e5d6051a01b002e588691116ac4f3</cites><orcidid>0000-0003-0078-4901 ; 0000-0002-2709-7864 ; 0000-0001-8750-1905 ; 0000-0001-5077-4862 ; 0000-0001-6581-9680 ; 0000-0001-5259-7353 ; 0000-0003-4468-3889 ; 0000-0002-2083-4438 ; 0000-0001-6127-2470 ; 0000-0002-1073-2390 ; 0000-0001-5932-0103 ; 0000-0001-9543-9558 ; 0000-0002-9991-6822 ; 0000-0003-3461-4679 ; 0000-0001-5391-8171 ; 0000-0001-9092-735X ; 0000-0001-7115-4646 ; 0000-0001-7218-3799</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2955909399/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2955909399?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38475092$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04524991$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bougourzi, Fares</creatorcontrib><creatorcontrib>Distante, Cosimo</creatorcontrib><creatorcontrib>Dornaika, Fadi</creatorcontrib><creatorcontrib>Taleb-Ahmed, Abdelmalik</creatorcontrib><creatorcontrib>Hadid, Abdenour</creatorcontrib><creatorcontrib>Chaudhary, Suman</creatorcontrib><creatorcontrib>Yang, Wanting</creatorcontrib><creatorcontrib>Qiang, Yan</creatorcontrib><creatorcontrib>Anwar, Talha</creatorcontrib><creatorcontrib>Breaban, Mihaela Elena</creatorcontrib><creatorcontrib>Hsu, Chih-Chung</creatorcontrib><creatorcontrib>Tai, Shen-Chieh</creatorcontrib><creatorcontrib>Chen, Shao-Ning</creatorcontrib><creatorcontrib>Tricarico, Davide</creatorcontrib><creatorcontrib>Chaudhry, Hafiza Ayesha Hoor</creatorcontrib><creatorcontrib>Fiandrotti, Attilio</creatorcontrib><creatorcontrib>Grangetto, Marco</creatorcontrib><creatorcontrib>Spatafora, Maria Ausilia Napoli</creatorcontrib><creatorcontrib>Ortis, Alessandro</creatorcontrib><creatorcontrib>Battiato, Sebastiano</creatorcontrib><title>COVID-19 Infection Percentage Estimation from Computed Tomography Scans: Results and Insights from the International Per-COVID-19 Challenge</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>COVID-19 analysis from medical imaging is an important task that has been intensively studied in the last years due to the spread of the COVID-19 pandemic. In fact, medical imaging has often been used as a complementary or main tool to recognize the infected persons. On the other hand, medical imaging has the ability to provide more details about COVID-19 infection, including its severity and spread, which makes it possible to evaluate the infection and follow-up the patient's state. CT scans are the most informative tool for COVID-19 infection, where the evaluation of COVID-19 infection is usually performed through infection segmentation. However, segmentation is a tedious task that requires much effort and time from expert radiologists. To deal with this limitation, an efficient framework for estimating COVID-19 infection as a regression task is proposed. The goal of the Per-COVID-19 challenge is to test the efficiency of modern deep learning methods on COVID-19 infection percentage estimation (CIPE) from CT scans. Participants had to develop an efficient deep learning approach that can learn from noisy data. In addition, participants had to cope with many challenges, including those related to COVID-19 infection complexity and crossdataset scenarios. This paper provides an overview of the COVID-19 infection percentage estimation challenge (Per-COVID-19) held at MIA-COVID-2022. Details of the competition data, challenges, and evaluation metrics are presented. The best performing approaches and their results are described and discussed.</description><subject>Artificial intelligence</subject><subject>Benchmarking</subject><subject>Computer Science</subject><subject>convolutional neural network</subject><subject>COVID-19</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Diagnostic imaging</subject><subject>Emerging diseases</subject><subject>Health aspects</subject><subject>Human health and pathology</subject><subject>Humans</subject><subject>Infection</subject><subject>Infections</subject><subject>Infectious diseases</subject><subject>Learning strategies</subject><subject>Life Sciences</subject><subject>Machine Learning</subject><subject>Medical Imaging</subject><subject>Medical imaging equipment</subject><subject>Pandemics</subject><subject>Per-COVID-19</subject><subject>Performance evaluation</subject><subject>Pulmonology and respiratory tract</subject><subject>Radionuclide Imaging</subject><subject>segmentation</subject><subject>Tomography, X-Ray Computed</subject><subject>transformer</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptUstu1DAUjRCIlsKCH0CR2MAixe_YbNBoKHSkkYqgsLUc5-YxSuKpnVTqN_DTODPD0FbIkh_H557rc32T5DVG55Qq9CEQhjjmPH-SnGJGWCYJQU_v7U-SFyFsECKUUvk8OaGS5Rwpcpr8Xl79Wn3OsEpXQwV2bN2QfgNvYRhNDelFGNve7NDKuz5dun47jVCm1653tTfb5i79Yc0QPqbfIUzdGFIzlFErtHUTD7ugsYGIjOCHnZLp5gzZMfGyMV0HQw0vk2eV6QK8Oqxnyc8vF9fLy2x99XW1XKwzyykeM4qtkhWyVEiBRZwpl7jgRjEoOeRS5CgHXopYEoNwEV0Dl1IojLEwllX0LFntdUtnNnrro0N_p51p9Q5wvtbGj63tQAucs7yk1GBjGCK4qCpVFYwXsjREEBW1Pu21tlPRQznXzZvugejDm6FtdO1uNUaKMslIVHi_V2gexV0u1nrGEOOEKYVvceS-O2Tz7maCMOq-DRa6zgzgpqCJ4kJILpiM1LePqBs3xR_odiyuYnql_rFqE922Q-XiI-0sqhexkowqRucnnv-HFUcJfWvdAFUb8QcBB0_WuxA8VEdjGOm5ZfWxZSP3zf0KHpl_e5T-Ac3G4c8</recordid><startdate>20240228</startdate><enddate>20240228</enddate><creator>Bougourzi, Fares</creator><creator>Distante, Cosimo</creator><creator>Dornaika, Fadi</creator><creator>Taleb-Ahmed, Abdelmalik</creator><creator>Hadid, Abdenour</creator><creator>Chaudhary, Suman</creator><creator>Yang, Wanting</creator><creator>Qiang, Yan</creator><creator>Anwar, Talha</creator><creator>Breaban, Mihaela Elena</creator><creator>Hsu, Chih-Chung</creator><creator>Tai, Shen-Chieh</creator><creator>Chen, Shao-Ning</creator><creator>Tricarico, Davide</creator><creator>Chaudhry, Hafiza Ayesha Hoor</creator><creator>Fiandrotti, Attilio</creator><creator>Grangetto, Marco</creator><creator>Spatafora, Maria Ausilia Napoli</creator><creator>Ortis, Alessandro</creator><creator>Battiato, Sebastiano</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0078-4901</orcidid><orcidid>https://orcid.org/0000-0002-2709-7864</orcidid><orcidid>https://orcid.org/0000-0001-8750-1905</orcidid><orcidid>https://orcid.org/0000-0001-5077-4862</orcidid><orcidid>https://orcid.org/0000-0001-6581-9680</orcidid><orcidid>https://orcid.org/0000-0001-5259-7353</orcidid><orcidid>https://orcid.org/0000-0003-4468-3889</orcidid><orcidid>https://orcid.org/0000-0002-2083-4438</orcidid><orcidid>https://orcid.org/0000-0001-6127-2470</orcidid><orcidid>https://orcid.org/0000-0002-1073-2390</orcidid><orcidid>https://orcid.org/0000-0001-5932-0103</orcidid><orcidid>https://orcid.org/0000-0001-9543-9558</orcidid><orcidid>https://orcid.org/0000-0002-9991-6822</orcidid><orcidid>https://orcid.org/0000-0003-3461-4679</orcidid><orcidid>https://orcid.org/0000-0001-5391-8171</orcidid><orcidid>https://orcid.org/0000-0001-9092-735X</orcidid><orcidid>https://orcid.org/0000-0001-7115-4646</orcidid><orcidid>https://orcid.org/0000-0001-7218-3799</orcidid></search><sort><creationdate>20240228</creationdate><title>COVID-19 Infection Percentage Estimation from Computed Tomography Scans: Results and Insights from the International Per-COVID-19 Challenge</title><author>Bougourzi, Fares ; Distante, Cosimo ; Dornaika, Fadi ; Taleb-Ahmed, Abdelmalik ; Hadid, Abdenour ; Chaudhary, Suman ; Yang, Wanting ; Qiang, Yan ; Anwar, Talha ; Breaban, Mihaela Elena ; Hsu, Chih-Chung ; Tai, Shen-Chieh ; Chen, Shao-Ning ; Tricarico, Davide ; Chaudhry, Hafiza Ayesha Hoor ; Fiandrotti, Attilio ; Grangetto, Marco ; Spatafora, Maria Ausilia Napoli ; Ortis, Alessandro ; Battiato, Sebastiano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c531t-31c98f0c3686163683581b5a94ed5e786707e5d6051a01b002e588691116ac4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Benchmarking</topic><topic>Computer Science</topic><topic>convolutional neural network</topic><topic>COVID-19</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Diagnostic imaging</topic><topic>Emerging diseases</topic><topic>Health aspects</topic><topic>Human health and pathology</topic><topic>Humans</topic><topic>Infection</topic><topic>Infections</topic><topic>Infectious diseases</topic><topic>Learning strategies</topic><topic>Life Sciences</topic><topic>Machine Learning</topic><topic>Medical Imaging</topic><topic>Medical imaging equipment</topic><topic>Pandemics</topic><topic>Per-COVID-19</topic><topic>Performance evaluation</topic><topic>Pulmonology and respiratory tract</topic><topic>Radionuclide Imaging</topic><topic>segmentation</topic><topic>Tomography, X-Ray Computed</topic><topic>transformer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bougourzi, Fares</creatorcontrib><creatorcontrib>Distante, Cosimo</creatorcontrib><creatorcontrib>Dornaika, Fadi</creatorcontrib><creatorcontrib>Taleb-Ahmed, Abdelmalik</creatorcontrib><creatorcontrib>Hadid, Abdenour</creatorcontrib><creatorcontrib>Chaudhary, Suman</creatorcontrib><creatorcontrib>Yang, Wanting</creatorcontrib><creatorcontrib>Qiang, Yan</creatorcontrib><creatorcontrib>Anwar, Talha</creatorcontrib><creatorcontrib>Breaban, Mihaela Elena</creatorcontrib><creatorcontrib>Hsu, Chih-Chung</creatorcontrib><creatorcontrib>Tai, Shen-Chieh</creatorcontrib><creatorcontrib>Chen, Shao-Ning</creatorcontrib><creatorcontrib>Tricarico, Davide</creatorcontrib><creatorcontrib>Chaudhry, Hafiza Ayesha Hoor</creatorcontrib><creatorcontrib>Fiandrotti, Attilio</creatorcontrib><creatorcontrib>Grangetto, Marco</creatorcontrib><creatorcontrib>Spatafora, Maria Ausilia Napoli</creatorcontrib><creatorcontrib>Ortis, Alessandro</creatorcontrib><creatorcontrib>Battiato, Sebastiano</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals (DOAJ)</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bougourzi, Fares</au><au>Distante, Cosimo</au><au>Dornaika, Fadi</au><au>Taleb-Ahmed, Abdelmalik</au><au>Hadid, Abdenour</au><au>Chaudhary, Suman</au><au>Yang, Wanting</au><au>Qiang, Yan</au><au>Anwar, Talha</au><au>Breaban, Mihaela Elena</au><au>Hsu, Chih-Chung</au><au>Tai, Shen-Chieh</au><au>Chen, Shao-Ning</au><au>Tricarico, Davide</au><au>Chaudhry, Hafiza Ayesha Hoor</au><au>Fiandrotti, Attilio</au><au>Grangetto, Marco</au><au>Spatafora, Maria Ausilia Napoli</au><au>Ortis, Alessandro</au><au>Battiato, Sebastiano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>COVID-19 Infection Percentage Estimation from Computed Tomography Scans: Results and Insights from the International Per-COVID-19 Challenge</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2024-02-28</date><risdate>2024</risdate><volume>24</volume><issue>5</issue><spage>1557</spage><pages>1557-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>COVID-19 analysis from medical imaging is an important task that has been intensively studied in the last years due to the spread of the COVID-19 pandemic. In fact, medical imaging has often been used as a complementary or main tool to recognize the infected persons. On the other hand, medical imaging has the ability to provide more details about COVID-19 infection, including its severity and spread, which makes it possible to evaluate the infection and follow-up the patient's state. CT scans are the most informative tool for COVID-19 infection, where the evaluation of COVID-19 infection is usually performed through infection segmentation. However, segmentation is a tedious task that requires much effort and time from expert radiologists. To deal with this limitation, an efficient framework for estimating COVID-19 infection as a regression task is proposed. The goal of the Per-COVID-19 challenge is to test the efficiency of modern deep learning methods on COVID-19 infection percentage estimation (CIPE) from CT scans. Participants had to develop an efficient deep learning approach that can learn from noisy data. In addition, participants had to cope with many challenges, including those related to COVID-19 infection complexity and crossdataset scenarios. This paper provides an overview of the COVID-19 infection percentage estimation challenge (Per-COVID-19) held at MIA-COVID-2022. Details of the competition data, challenges, and evaluation metrics are presented. The best performing approaches and their results are described and discussed.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38475092</pmid><doi>10.3390/s24051557</doi><orcidid>https://orcid.org/0000-0003-0078-4901</orcidid><orcidid>https://orcid.org/0000-0002-2709-7864</orcidid><orcidid>https://orcid.org/0000-0001-8750-1905</orcidid><orcidid>https://orcid.org/0000-0001-5077-4862</orcidid><orcidid>https://orcid.org/0000-0001-6581-9680</orcidid><orcidid>https://orcid.org/0000-0001-5259-7353</orcidid><orcidid>https://orcid.org/0000-0003-4468-3889</orcidid><orcidid>https://orcid.org/0000-0002-2083-4438</orcidid><orcidid>https://orcid.org/0000-0001-6127-2470</orcidid><orcidid>https://orcid.org/0000-0002-1073-2390</orcidid><orcidid>https://orcid.org/0000-0001-5932-0103</orcidid><orcidid>https://orcid.org/0000-0001-9543-9558</orcidid><orcidid>https://orcid.org/0000-0002-9991-6822</orcidid><orcidid>https://orcid.org/0000-0003-3461-4679</orcidid><orcidid>https://orcid.org/0000-0001-5391-8171</orcidid><orcidid>https://orcid.org/0000-0001-9092-735X</orcidid><orcidid>https://orcid.org/0000-0001-7115-4646</orcidid><orcidid>https://orcid.org/0000-0001-7218-3799</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2024-02, Vol.24 (5), p.1557 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_61747d33a1aa4021bff9fb45b8da2629 |
source | PMC (PubMed Central); Publicly Available Content (ProQuest) |
subjects | Artificial intelligence Benchmarking Computer Science convolutional neural network COVID-19 Datasets Deep learning Diagnostic imaging Emerging diseases Health aspects Human health and pathology Humans Infection Infections Infectious diseases Learning strategies Life Sciences Machine Learning Medical Imaging Medical imaging equipment Pandemics Per-COVID-19 Performance evaluation Pulmonology and respiratory tract Radionuclide Imaging segmentation Tomography, X-Ray Computed transformer |
title | COVID-19 Infection Percentage Estimation from Computed Tomography Scans: Results and Insights from the International Per-COVID-19 Challenge |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A34%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=COVID-19%20Infection%20Percentage%20Estimation%20from%20Computed%20Tomography%20Scans:%20Results%20and%20Insights%20from%20the%20International%20Per-COVID-19%20Challenge&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Bougourzi,%20Fares&rft.date=2024-02-28&rft.volume=24&rft.issue=5&rft.spage=1557&rft.pages=1557-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s24051557&rft_dat=%3Cgale_doaj_%3EA786439432%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c531t-31c98f0c3686163683581b5a94ed5e786707e5d6051a01b002e588691116ac4f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2955909399&rft_id=info:pmid/38475092&rft_galeid=A786439432&rfr_iscdi=true |