Loading…
Effect of Patient Clinical Variables in Osteoporosis Classification Using Hip X-rays in Deep Learning Analysis
Background and Objectives: A few deep learning studies have reported that combining image features with patient variables enhanced identification accuracy compared with image-only models. However, previous studies have not statistically reported the additional effect of patient variables on the imag...
Saved in:
Published in: | Medicina (Kaunas, Lithuania) Lithuania), 2021-08, Vol.57 (8), p.846 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c577t-6ddd88c2a00dba4f5f4f4d455bd8097257411839723f70118aef9390a2f1de793 |
---|---|
cites | cdi_FETCH-LOGICAL-c577t-6ddd88c2a00dba4f5f4f4d455bd8097257411839723f70118aef9390a2f1de793 |
container_end_page | |
container_issue | 8 |
container_start_page | 846 |
container_title | Medicina (Kaunas, Lithuania) |
container_volume | 57 |
creator | Yamamoto, Norio Sukegawa, Shintaro Yamashita, Kazutaka Manabe, Masaki Nakano, Keisuke Takabatake, Kiyofumi Kawai, Hotaka Ozaki, Toshifumi Kawasaki, Keisuke Nagatsuka, Hitoshi Furuki, Yoshihiko Yorifuji, Takashi |
description | Background and Objectives: A few deep learning studies have reported that combining image features with patient variables enhanced identification accuracy compared with image-only models. However, previous studies have not statistically reported the additional effect of patient variables on the image-only models. This study aimed to statistically evaluate the osteoporosis identification ability of deep learning by combining hip radiographs with patient variables. Materials andMethods: We collected a dataset containing 1699 images from patients who underwent skeletal-bone-mineral density measurements and hip radiography at a general hospital from 2014 to 2021. Osteoporosis was assessed from hip radiographs using convolutional neural network (CNN) models (ResNet18, 34, 50, 101, and 152). We also investigated ensemble models with patient clinical variables added to each CNN. Accuracy, precision, recall, specificity, F1 score, and area under the curve (AUC) were calculated as performance metrics. Furthermore, we statistically compared the accuracy of the image-only model with that of an ensemble model that included images plus patient factors, including effect size for each performance metric. Results: All metrics were improved in the ResNet34 ensemble model compared with the image-only model. The AUC score in the ensemble model was significantly improved compared with the image-only model (difference 0.004; 95% CI 0.002–0.0007; p = 0.0004, effect size: 0.871). Conclusions: This study revealed the additional effect of patient variables in identification of osteoporosis using deep CNNs with hip radiographs. Our results provided evidence that the patient variables had additive synergistic effects on the image in osteoporosis identification. |
doi_str_mv | 10.3390/medicina57080846 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6178c982aff941d7a1574ecdd282b30a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6178c982aff941d7a1574ecdd282b30a</doaj_id><sourcerecordid>2566028299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c577t-6ddd88c2a00dba4f5f4f4d455bd8097257411839723f70118aef9390a2f1de793</originalsourceid><addsrcrecordid>eNpdks1vGyEQxVdVoyZNe-8RqZdeNoUFFvZSKXLTJJKl5JBEvaFZPlwsDFtYV_J_X2xHVZMTI-bx4_GYpvlE8AWlA_66scZrH4ELLLFk_ZvmjPRMtgNh7O1_9WnzvpQ1xrTjonvXnFLGGMG8O2vilXNWzyg5dA-zt3FGi-Cj1xDQE2QPY7AF-YjuymzTlHIqvlQJlOJdVc0-RfRYfFyhGz-hn22G3UH_3doJLS3kuO9dRgi7evJDc-IgFPvxeT1vHn9cPSxu2uXd9e3ictlqLsTc9sYYKXUHGJsRmOOOOWYY56OReBD1FYwQSWtFncC1BOuGGgh0jhgrBnre3B65JsFaTdlvIO9UAq8OGymvFOTZ62BVT4TUg-zAuYERI4BUutXGdLIbKYbK-nZkTduxBq5rRhnCC-jLTvS_1Cr9UdWgHHhfAV-eATn93toyq40v2oYA0aZtUR3ve1xvG_a-P7-SrtM21_AOKk5ldcuqCh9Vun5Hydb9M0Ow2g-Gej0Y9C_ndaxf</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565386174</pqid></control><display><type>article</type><title>Effect of Patient Clinical Variables in Osteoporosis Classification Using Hip X-rays in Deep Learning Analysis</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><creator>Yamamoto, Norio ; Sukegawa, Shintaro ; Yamashita, Kazutaka ; Manabe, Masaki ; Nakano, Keisuke ; Takabatake, Kiyofumi ; Kawai, Hotaka ; Ozaki, Toshifumi ; Kawasaki, Keisuke ; Nagatsuka, Hitoshi ; Furuki, Yoshihiko ; Yorifuji, Takashi</creator><creatorcontrib>Yamamoto, Norio ; Sukegawa, Shintaro ; Yamashita, Kazutaka ; Manabe, Masaki ; Nakano, Keisuke ; Takabatake, Kiyofumi ; Kawai, Hotaka ; Ozaki, Toshifumi ; Kawasaki, Keisuke ; Nagatsuka, Hitoshi ; Furuki, Yoshihiko ; Yorifuji, Takashi</creatorcontrib><description>Background and Objectives: A few deep learning studies have reported that combining image features with patient variables enhanced identification accuracy compared with image-only models. However, previous studies have not statistically reported the additional effect of patient variables on the image-only models. This study aimed to statistically evaluate the osteoporosis identification ability of deep learning by combining hip radiographs with patient variables. Materials andMethods: We collected a dataset containing 1699 images from patients who underwent skeletal-bone-mineral density measurements and hip radiography at a general hospital from 2014 to 2021. Osteoporosis was assessed from hip radiographs using convolutional neural network (CNN) models (ResNet18, 34, 50, 101, and 152). We also investigated ensemble models with patient clinical variables added to each CNN. Accuracy, precision, recall, specificity, F1 score, and area under the curve (AUC) were calculated as performance metrics. Furthermore, we statistically compared the accuracy of the image-only model with that of an ensemble model that included images plus patient factors, including effect size for each performance metric. Results: All metrics were improved in the ResNet34 ensemble model compared with the image-only model. The AUC score in the ensemble model was significantly improved compared with the image-only model (difference 0.004; 95% CI 0.002–0.0007; p = 0.0004, effect size: 0.871). Conclusions: This study revealed the additional effect of patient variables in identification of osteoporosis using deep CNNs with hip radiographs. Our results provided evidence that the patient variables had additive synergistic effects on the image in osteoporosis identification.</description><identifier>ISSN: 1648-9144</identifier><identifier>ISSN: 1010-660X</identifier><identifier>EISSN: 1648-9144</identifier><identifier>DOI: 10.3390/medicina57080846</identifier><identifier>PMID: 34441052</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Artificial intelligence ; Body mass index ; convolutional neural network ; Datasets ; Deep learning ; effect size ; ensemble model ; Fractures ; Hip joint ; Neural networks ; Orthopedics ; Osteoporosis ; patient variables ; Patients ; X-rays</subject><ispartof>Medicina (Kaunas, Lithuania), 2021-08, Vol.57 (8), p.846</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c577t-6ddd88c2a00dba4f5f4f4d455bd8097257411839723f70118aef9390a2f1de793</citedby><cites>FETCH-LOGICAL-c577t-6ddd88c2a00dba4f5f4f4d455bd8097257411839723f70118aef9390a2f1de793</cites><orcidid>0000-0002-7902-9994 ; 0000-0001-7986-2735 ; 0000-0003-1732-9307</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2565386174/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2565386174?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Yamamoto, Norio</creatorcontrib><creatorcontrib>Sukegawa, Shintaro</creatorcontrib><creatorcontrib>Yamashita, Kazutaka</creatorcontrib><creatorcontrib>Manabe, Masaki</creatorcontrib><creatorcontrib>Nakano, Keisuke</creatorcontrib><creatorcontrib>Takabatake, Kiyofumi</creatorcontrib><creatorcontrib>Kawai, Hotaka</creatorcontrib><creatorcontrib>Ozaki, Toshifumi</creatorcontrib><creatorcontrib>Kawasaki, Keisuke</creatorcontrib><creatorcontrib>Nagatsuka, Hitoshi</creatorcontrib><creatorcontrib>Furuki, Yoshihiko</creatorcontrib><creatorcontrib>Yorifuji, Takashi</creatorcontrib><title>Effect of Patient Clinical Variables in Osteoporosis Classification Using Hip X-rays in Deep Learning Analysis</title><title>Medicina (Kaunas, Lithuania)</title><description>Background and Objectives: A few deep learning studies have reported that combining image features with patient variables enhanced identification accuracy compared with image-only models. However, previous studies have not statistically reported the additional effect of patient variables on the image-only models. This study aimed to statistically evaluate the osteoporosis identification ability of deep learning by combining hip radiographs with patient variables. Materials andMethods: We collected a dataset containing 1699 images from patients who underwent skeletal-bone-mineral density measurements and hip radiography at a general hospital from 2014 to 2021. Osteoporosis was assessed from hip radiographs using convolutional neural network (CNN) models (ResNet18, 34, 50, 101, and 152). We also investigated ensemble models with patient clinical variables added to each CNN. Accuracy, precision, recall, specificity, F1 score, and area under the curve (AUC) were calculated as performance metrics. Furthermore, we statistically compared the accuracy of the image-only model with that of an ensemble model that included images plus patient factors, including effect size for each performance metric. Results: All metrics were improved in the ResNet34 ensemble model compared with the image-only model. The AUC score in the ensemble model was significantly improved compared with the image-only model (difference 0.004; 95% CI 0.002–0.0007; p = 0.0004, effect size: 0.871). Conclusions: This study revealed the additional effect of patient variables in identification of osteoporosis using deep CNNs with hip radiographs. Our results provided evidence that the patient variables had additive synergistic effects on the image in osteoporosis identification.</description><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>Body mass index</subject><subject>convolutional neural network</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>effect size</subject><subject>ensemble model</subject><subject>Fractures</subject><subject>Hip joint</subject><subject>Neural networks</subject><subject>Orthopedics</subject><subject>Osteoporosis</subject><subject>patient variables</subject><subject>Patients</subject><subject>X-rays</subject><issn>1648-9144</issn><issn>1010-660X</issn><issn>1648-9144</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks1vGyEQxVdVoyZNe-8RqZdeNoUFFvZSKXLTJJKl5JBEvaFZPlwsDFtYV_J_X2xHVZMTI-bx4_GYpvlE8AWlA_66scZrH4ELLLFk_ZvmjPRMtgNh7O1_9WnzvpQ1xrTjonvXnFLGGMG8O2vilXNWzyg5dA-zt3FGi-Cj1xDQE2QPY7AF-YjuymzTlHIqvlQJlOJdVc0-RfRYfFyhGz-hn22G3UH_3doJLS3kuO9dRgi7evJDc-IgFPvxeT1vHn9cPSxu2uXd9e3ictlqLsTc9sYYKXUHGJsRmOOOOWYY56OReBD1FYwQSWtFncC1BOuGGgh0jhgrBnre3B65JsFaTdlvIO9UAq8OGymvFOTZ62BVT4TUg-zAuYERI4BUutXGdLIbKYbK-nZkTduxBq5rRhnCC-jLTvS_1Cr9UdWgHHhfAV-eATn93toyq40v2oYA0aZtUR3ve1xvG_a-P7-SrtM21_AOKk5ldcuqCh9Vun5Hydb9M0Ow2g-Gej0Y9C_ndaxf</recordid><startdate>20210820</startdate><enddate>20210820</enddate><creator>Yamamoto, Norio</creator><creator>Sukegawa, Shintaro</creator><creator>Yamashita, Kazutaka</creator><creator>Manabe, Masaki</creator><creator>Nakano, Keisuke</creator><creator>Takabatake, Kiyofumi</creator><creator>Kawai, Hotaka</creator><creator>Ozaki, Toshifumi</creator><creator>Kawasaki, Keisuke</creator><creator>Nagatsuka, Hitoshi</creator><creator>Furuki, Yoshihiko</creator><creator>Yorifuji, Takashi</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7902-9994</orcidid><orcidid>https://orcid.org/0000-0001-7986-2735</orcidid><orcidid>https://orcid.org/0000-0003-1732-9307</orcidid></search><sort><creationdate>20210820</creationdate><title>Effect of Patient Clinical Variables in Osteoporosis Classification Using Hip X-rays in Deep Learning Analysis</title><author>Yamamoto, Norio ; Sukegawa, Shintaro ; Yamashita, Kazutaka ; Manabe, Masaki ; Nakano, Keisuke ; Takabatake, Kiyofumi ; Kawai, Hotaka ; Ozaki, Toshifumi ; Kawasaki, Keisuke ; Nagatsuka, Hitoshi ; Furuki, Yoshihiko ; Yorifuji, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c577t-6ddd88c2a00dba4f5f4f4d455bd8097257411839723f70118aef9390a2f1de793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>Body mass index</topic><topic>convolutional neural network</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>effect size</topic><topic>ensemble model</topic><topic>Fractures</topic><topic>Hip joint</topic><topic>Neural networks</topic><topic>Orthopedics</topic><topic>Osteoporosis</topic><topic>patient variables</topic><topic>Patients</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamamoto, Norio</creatorcontrib><creatorcontrib>Sukegawa, Shintaro</creatorcontrib><creatorcontrib>Yamashita, Kazutaka</creatorcontrib><creatorcontrib>Manabe, Masaki</creatorcontrib><creatorcontrib>Nakano, Keisuke</creatorcontrib><creatorcontrib>Takabatake, Kiyofumi</creatorcontrib><creatorcontrib>Kawai, Hotaka</creatorcontrib><creatorcontrib>Ozaki, Toshifumi</creatorcontrib><creatorcontrib>Kawasaki, Keisuke</creatorcontrib><creatorcontrib>Nagatsuka, Hitoshi</creatorcontrib><creatorcontrib>Furuki, Yoshihiko</creatorcontrib><creatorcontrib>Yorifuji, Takashi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Medicina (Kaunas, Lithuania)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamamoto, Norio</au><au>Sukegawa, Shintaro</au><au>Yamashita, Kazutaka</au><au>Manabe, Masaki</au><au>Nakano, Keisuke</au><au>Takabatake, Kiyofumi</au><au>Kawai, Hotaka</au><au>Ozaki, Toshifumi</au><au>Kawasaki, Keisuke</au><au>Nagatsuka, Hitoshi</au><au>Furuki, Yoshihiko</au><au>Yorifuji, Takashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Patient Clinical Variables in Osteoporosis Classification Using Hip X-rays in Deep Learning Analysis</atitle><jtitle>Medicina (Kaunas, Lithuania)</jtitle><date>2021-08-20</date><risdate>2021</risdate><volume>57</volume><issue>8</issue><spage>846</spage><pages>846-</pages><issn>1648-9144</issn><issn>1010-660X</issn><eissn>1648-9144</eissn><abstract>Background and Objectives: A few deep learning studies have reported that combining image features with patient variables enhanced identification accuracy compared with image-only models. However, previous studies have not statistically reported the additional effect of patient variables on the image-only models. This study aimed to statistically evaluate the osteoporosis identification ability of deep learning by combining hip radiographs with patient variables. Materials andMethods: We collected a dataset containing 1699 images from patients who underwent skeletal-bone-mineral density measurements and hip radiography at a general hospital from 2014 to 2021. Osteoporosis was assessed from hip radiographs using convolutional neural network (CNN) models (ResNet18, 34, 50, 101, and 152). We also investigated ensemble models with patient clinical variables added to each CNN. Accuracy, precision, recall, specificity, F1 score, and area under the curve (AUC) were calculated as performance metrics. Furthermore, we statistically compared the accuracy of the image-only model with that of an ensemble model that included images plus patient factors, including effect size for each performance metric. Results: All metrics were improved in the ResNet34 ensemble model compared with the image-only model. The AUC score in the ensemble model was significantly improved compared with the image-only model (difference 0.004; 95% CI 0.002–0.0007; p = 0.0004, effect size: 0.871). Conclusions: This study revealed the additional effect of patient variables in identification of osteoporosis using deep CNNs with hip radiographs. Our results provided evidence that the patient variables had additive synergistic effects on the image in osteoporosis identification.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34441052</pmid><doi>10.3390/medicina57080846</doi><orcidid>https://orcid.org/0000-0002-7902-9994</orcidid><orcidid>https://orcid.org/0000-0001-7986-2735</orcidid><orcidid>https://orcid.org/0000-0003-1732-9307</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1648-9144 |
ispartof | Medicina (Kaunas, Lithuania), 2021-08, Vol.57 (8), p.846 |
issn | 1648-9144 1010-660X 1648-9144 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_6178c982aff941d7a1574ecdd282b30a |
source | PubMed Central Free; Publicly Available Content Database |
subjects | Accuracy Artificial intelligence Body mass index convolutional neural network Datasets Deep learning effect size ensemble model Fractures Hip joint Neural networks Orthopedics Osteoporosis patient variables Patients X-rays |
title | Effect of Patient Clinical Variables in Osteoporosis Classification Using Hip X-rays in Deep Learning Analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A36%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Patient%20Clinical%20Variables%20in%20Osteoporosis%20Classification%20Using%20Hip%20X-rays%20in%20Deep%20Learning%20Analysis&rft.jtitle=Medicina%20(Kaunas,%20Lithuania)&rft.au=Yamamoto,%20Norio&rft.date=2021-08-20&rft.volume=57&rft.issue=8&rft.spage=846&rft.pages=846-&rft.issn=1648-9144&rft.eissn=1648-9144&rft_id=info:doi/10.3390/medicina57080846&rft_dat=%3Cproquest_doaj_%3E2566028299%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c577t-6ddd88c2a00dba4f5f4f4d455bd8097257411839723f70118aef9390a2f1de793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2565386174&rft_id=info:pmid/34441052&rfr_iscdi=true |