Loading…

Effect of Patient Clinical Variables in Osteoporosis Classification Using Hip X-rays in Deep Learning Analysis

Background and Objectives: A few deep learning studies have reported that combining image features with patient variables enhanced identification accuracy compared with image-only models. However, previous studies have not statistically reported the additional effect of patient variables on the imag...

Full description

Saved in:
Bibliographic Details
Published in:Medicina (Kaunas, Lithuania) Lithuania), 2021-08, Vol.57 (8), p.846
Main Authors: Yamamoto, Norio, Sukegawa, Shintaro, Yamashita, Kazutaka, Manabe, Masaki, Nakano, Keisuke, Takabatake, Kiyofumi, Kawai, Hotaka, Ozaki, Toshifumi, Kawasaki, Keisuke, Nagatsuka, Hitoshi, Furuki, Yoshihiko, Yorifuji, Takashi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c577t-6ddd88c2a00dba4f5f4f4d455bd8097257411839723f70118aef9390a2f1de793
cites cdi_FETCH-LOGICAL-c577t-6ddd88c2a00dba4f5f4f4d455bd8097257411839723f70118aef9390a2f1de793
container_end_page
container_issue 8
container_start_page 846
container_title Medicina (Kaunas, Lithuania)
container_volume 57
creator Yamamoto, Norio
Sukegawa, Shintaro
Yamashita, Kazutaka
Manabe, Masaki
Nakano, Keisuke
Takabatake, Kiyofumi
Kawai, Hotaka
Ozaki, Toshifumi
Kawasaki, Keisuke
Nagatsuka, Hitoshi
Furuki, Yoshihiko
Yorifuji, Takashi
description Background and Objectives: A few deep learning studies have reported that combining image features with patient variables enhanced identification accuracy compared with image-only models. However, previous studies have not statistically reported the additional effect of patient variables on the image-only models. This study aimed to statistically evaluate the osteoporosis identification ability of deep learning by combining hip radiographs with patient variables. Materials andMethods: We collected a dataset containing 1699 images from patients who underwent skeletal-bone-mineral density measurements and hip radiography at a general hospital from 2014 to 2021. Osteoporosis was assessed from hip radiographs using convolutional neural network (CNN) models (ResNet18, 34, 50, 101, and 152). We also investigated ensemble models with patient clinical variables added to each CNN. Accuracy, precision, recall, specificity, F1 score, and area under the curve (AUC) were calculated as performance metrics. Furthermore, we statistically compared the accuracy of the image-only model with that of an ensemble model that included images plus patient factors, including effect size for each performance metric. Results: All metrics were improved in the ResNet34 ensemble model compared with the image-only model. The AUC score in the ensemble model was significantly improved compared with the image-only model (difference 0.004; 95% CI 0.002–0.0007; p = 0.0004, effect size: 0.871). Conclusions: This study revealed the additional effect of patient variables in identification of osteoporosis using deep CNNs with hip radiographs. Our results provided evidence that the patient variables had additive synergistic effects on the image in osteoporosis identification.
doi_str_mv 10.3390/medicina57080846
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6178c982aff941d7a1574ecdd282b30a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6178c982aff941d7a1574ecdd282b30a</doaj_id><sourcerecordid>2566028299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c577t-6ddd88c2a00dba4f5f4f4d455bd8097257411839723f70118aef9390a2f1de793</originalsourceid><addsrcrecordid>eNpdks1vGyEQxVdVoyZNe-8RqZdeNoUFFvZSKXLTJJKl5JBEvaFZPlwsDFtYV_J_X2xHVZMTI-bx4_GYpvlE8AWlA_66scZrH4ELLLFk_ZvmjPRMtgNh7O1_9WnzvpQ1xrTjonvXnFLGGMG8O2vilXNWzyg5dA-zt3FGi-Cj1xDQE2QPY7AF-YjuymzTlHIqvlQJlOJdVc0-RfRYfFyhGz-hn22G3UH_3doJLS3kuO9dRgi7evJDc-IgFPvxeT1vHn9cPSxu2uXd9e3ictlqLsTc9sYYKXUHGJsRmOOOOWYY56OReBD1FYwQSWtFncC1BOuGGgh0jhgrBnre3B65JsFaTdlvIO9UAq8OGymvFOTZ62BVT4TUg-zAuYERI4BUutXGdLIbKYbK-nZkTduxBq5rRhnCC-jLTvS_1Cr9UdWgHHhfAV-eATn93toyq40v2oYA0aZtUR3ve1xvG_a-P7-SrtM21_AOKk5ldcuqCh9Vun5Hydb9M0Ow2g-Gej0Y9C_ndaxf</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2565386174</pqid></control><display><type>article</type><title>Effect of Patient Clinical Variables in Osteoporosis Classification Using Hip X-rays in Deep Learning Analysis</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><creator>Yamamoto, Norio ; Sukegawa, Shintaro ; Yamashita, Kazutaka ; Manabe, Masaki ; Nakano, Keisuke ; Takabatake, Kiyofumi ; Kawai, Hotaka ; Ozaki, Toshifumi ; Kawasaki, Keisuke ; Nagatsuka, Hitoshi ; Furuki, Yoshihiko ; Yorifuji, Takashi</creator><creatorcontrib>Yamamoto, Norio ; Sukegawa, Shintaro ; Yamashita, Kazutaka ; Manabe, Masaki ; Nakano, Keisuke ; Takabatake, Kiyofumi ; Kawai, Hotaka ; Ozaki, Toshifumi ; Kawasaki, Keisuke ; Nagatsuka, Hitoshi ; Furuki, Yoshihiko ; Yorifuji, Takashi</creatorcontrib><description>Background and Objectives: A few deep learning studies have reported that combining image features with patient variables enhanced identification accuracy compared with image-only models. However, previous studies have not statistically reported the additional effect of patient variables on the image-only models. This study aimed to statistically evaluate the osteoporosis identification ability of deep learning by combining hip radiographs with patient variables. Materials andMethods: We collected a dataset containing 1699 images from patients who underwent skeletal-bone-mineral density measurements and hip radiography at a general hospital from 2014 to 2021. Osteoporosis was assessed from hip radiographs using convolutional neural network (CNN) models (ResNet18, 34, 50, 101, and 152). We also investigated ensemble models with patient clinical variables added to each CNN. Accuracy, precision, recall, specificity, F1 score, and area under the curve (AUC) were calculated as performance metrics. Furthermore, we statistically compared the accuracy of the image-only model with that of an ensemble model that included images plus patient factors, including effect size for each performance metric. Results: All metrics were improved in the ResNet34 ensemble model compared with the image-only model. The AUC score in the ensemble model was significantly improved compared with the image-only model (difference 0.004; 95% CI 0.002–0.0007; p = 0.0004, effect size: 0.871). Conclusions: This study revealed the additional effect of patient variables in identification of osteoporosis using deep CNNs with hip radiographs. Our results provided evidence that the patient variables had additive synergistic effects on the image in osteoporosis identification.</description><identifier>ISSN: 1648-9144</identifier><identifier>ISSN: 1010-660X</identifier><identifier>EISSN: 1648-9144</identifier><identifier>DOI: 10.3390/medicina57080846</identifier><identifier>PMID: 34441052</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Artificial intelligence ; Body mass index ; convolutional neural network ; Datasets ; Deep learning ; effect size ; ensemble model ; Fractures ; Hip joint ; Neural networks ; Orthopedics ; Osteoporosis ; patient variables ; Patients ; X-rays</subject><ispartof>Medicina (Kaunas, Lithuania), 2021-08, Vol.57 (8), p.846</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c577t-6ddd88c2a00dba4f5f4f4d455bd8097257411839723f70118aef9390a2f1de793</citedby><cites>FETCH-LOGICAL-c577t-6ddd88c2a00dba4f5f4f4d455bd8097257411839723f70118aef9390a2f1de793</cites><orcidid>0000-0002-7902-9994 ; 0000-0001-7986-2735 ; 0000-0003-1732-9307</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2565386174/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2565386174?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Yamamoto, Norio</creatorcontrib><creatorcontrib>Sukegawa, Shintaro</creatorcontrib><creatorcontrib>Yamashita, Kazutaka</creatorcontrib><creatorcontrib>Manabe, Masaki</creatorcontrib><creatorcontrib>Nakano, Keisuke</creatorcontrib><creatorcontrib>Takabatake, Kiyofumi</creatorcontrib><creatorcontrib>Kawai, Hotaka</creatorcontrib><creatorcontrib>Ozaki, Toshifumi</creatorcontrib><creatorcontrib>Kawasaki, Keisuke</creatorcontrib><creatorcontrib>Nagatsuka, Hitoshi</creatorcontrib><creatorcontrib>Furuki, Yoshihiko</creatorcontrib><creatorcontrib>Yorifuji, Takashi</creatorcontrib><title>Effect of Patient Clinical Variables in Osteoporosis Classification Using Hip X-rays in Deep Learning Analysis</title><title>Medicina (Kaunas, Lithuania)</title><description>Background and Objectives: A few deep learning studies have reported that combining image features with patient variables enhanced identification accuracy compared with image-only models. However, previous studies have not statistically reported the additional effect of patient variables on the image-only models. This study aimed to statistically evaluate the osteoporosis identification ability of deep learning by combining hip radiographs with patient variables. Materials andMethods: We collected a dataset containing 1699 images from patients who underwent skeletal-bone-mineral density measurements and hip radiography at a general hospital from 2014 to 2021. Osteoporosis was assessed from hip radiographs using convolutional neural network (CNN) models (ResNet18, 34, 50, 101, and 152). We also investigated ensemble models with patient clinical variables added to each CNN. Accuracy, precision, recall, specificity, F1 score, and area under the curve (AUC) were calculated as performance metrics. Furthermore, we statistically compared the accuracy of the image-only model with that of an ensemble model that included images plus patient factors, including effect size for each performance metric. Results: All metrics were improved in the ResNet34 ensemble model compared with the image-only model. The AUC score in the ensemble model was significantly improved compared with the image-only model (difference 0.004; 95% CI 0.002–0.0007; p = 0.0004, effect size: 0.871). Conclusions: This study revealed the additional effect of patient variables in identification of osteoporosis using deep CNNs with hip radiographs. Our results provided evidence that the patient variables had additive synergistic effects on the image in osteoporosis identification.</description><subject>Accuracy</subject><subject>Artificial intelligence</subject><subject>Body mass index</subject><subject>convolutional neural network</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>effect size</subject><subject>ensemble model</subject><subject>Fractures</subject><subject>Hip joint</subject><subject>Neural networks</subject><subject>Orthopedics</subject><subject>Osteoporosis</subject><subject>patient variables</subject><subject>Patients</subject><subject>X-rays</subject><issn>1648-9144</issn><issn>1010-660X</issn><issn>1648-9144</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks1vGyEQxVdVoyZNe-8RqZdeNoUFFvZSKXLTJJKl5JBEvaFZPlwsDFtYV_J_X2xHVZMTI-bx4_GYpvlE8AWlA_66scZrH4ELLLFk_ZvmjPRMtgNh7O1_9WnzvpQ1xrTjonvXnFLGGMG8O2vilXNWzyg5dA-zt3FGi-Cj1xDQE2QPY7AF-YjuymzTlHIqvlQJlOJdVc0-RfRYfFyhGz-hn22G3UH_3doJLS3kuO9dRgi7evJDc-IgFPvxeT1vHn9cPSxu2uXd9e3ictlqLsTc9sYYKXUHGJsRmOOOOWYY56OReBD1FYwQSWtFncC1BOuGGgh0jhgrBnre3B65JsFaTdlvIO9UAq8OGymvFOTZ62BVT4TUg-zAuYERI4BUutXGdLIbKYbK-nZkTduxBq5rRhnCC-jLTvS_1Cr9UdWgHHhfAV-eATn93toyq40v2oYA0aZtUR3ve1xvG_a-P7-SrtM21_AOKk5ldcuqCh9Vun5Hydb9M0Ow2g-Gej0Y9C_ndaxf</recordid><startdate>20210820</startdate><enddate>20210820</enddate><creator>Yamamoto, Norio</creator><creator>Sukegawa, Shintaro</creator><creator>Yamashita, Kazutaka</creator><creator>Manabe, Masaki</creator><creator>Nakano, Keisuke</creator><creator>Takabatake, Kiyofumi</creator><creator>Kawai, Hotaka</creator><creator>Ozaki, Toshifumi</creator><creator>Kawasaki, Keisuke</creator><creator>Nagatsuka, Hitoshi</creator><creator>Furuki, Yoshihiko</creator><creator>Yorifuji, Takashi</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7902-9994</orcidid><orcidid>https://orcid.org/0000-0001-7986-2735</orcidid><orcidid>https://orcid.org/0000-0003-1732-9307</orcidid></search><sort><creationdate>20210820</creationdate><title>Effect of Patient Clinical Variables in Osteoporosis Classification Using Hip X-rays in Deep Learning Analysis</title><author>Yamamoto, Norio ; Sukegawa, Shintaro ; Yamashita, Kazutaka ; Manabe, Masaki ; Nakano, Keisuke ; Takabatake, Kiyofumi ; Kawai, Hotaka ; Ozaki, Toshifumi ; Kawasaki, Keisuke ; Nagatsuka, Hitoshi ; Furuki, Yoshihiko ; Yorifuji, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c577t-6ddd88c2a00dba4f5f4f4d455bd8097257411839723f70118aef9390a2f1de793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Artificial intelligence</topic><topic>Body mass index</topic><topic>convolutional neural network</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>effect size</topic><topic>ensemble model</topic><topic>Fractures</topic><topic>Hip joint</topic><topic>Neural networks</topic><topic>Orthopedics</topic><topic>Osteoporosis</topic><topic>patient variables</topic><topic>Patients</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamamoto, Norio</creatorcontrib><creatorcontrib>Sukegawa, Shintaro</creatorcontrib><creatorcontrib>Yamashita, Kazutaka</creatorcontrib><creatorcontrib>Manabe, Masaki</creatorcontrib><creatorcontrib>Nakano, Keisuke</creatorcontrib><creatorcontrib>Takabatake, Kiyofumi</creatorcontrib><creatorcontrib>Kawai, Hotaka</creatorcontrib><creatorcontrib>Ozaki, Toshifumi</creatorcontrib><creatorcontrib>Kawasaki, Keisuke</creatorcontrib><creatorcontrib>Nagatsuka, Hitoshi</creatorcontrib><creatorcontrib>Furuki, Yoshihiko</creatorcontrib><creatorcontrib>Yorifuji, Takashi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Medicina (Kaunas, Lithuania)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamamoto, Norio</au><au>Sukegawa, Shintaro</au><au>Yamashita, Kazutaka</au><au>Manabe, Masaki</au><au>Nakano, Keisuke</au><au>Takabatake, Kiyofumi</au><au>Kawai, Hotaka</au><au>Ozaki, Toshifumi</au><au>Kawasaki, Keisuke</au><au>Nagatsuka, Hitoshi</au><au>Furuki, Yoshihiko</au><au>Yorifuji, Takashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Patient Clinical Variables in Osteoporosis Classification Using Hip X-rays in Deep Learning Analysis</atitle><jtitle>Medicina (Kaunas, Lithuania)</jtitle><date>2021-08-20</date><risdate>2021</risdate><volume>57</volume><issue>8</issue><spage>846</spage><pages>846-</pages><issn>1648-9144</issn><issn>1010-660X</issn><eissn>1648-9144</eissn><abstract>Background and Objectives: A few deep learning studies have reported that combining image features with patient variables enhanced identification accuracy compared with image-only models. However, previous studies have not statistically reported the additional effect of patient variables on the image-only models. This study aimed to statistically evaluate the osteoporosis identification ability of deep learning by combining hip radiographs with patient variables. Materials andMethods: We collected a dataset containing 1699 images from patients who underwent skeletal-bone-mineral density measurements and hip radiography at a general hospital from 2014 to 2021. Osteoporosis was assessed from hip radiographs using convolutional neural network (CNN) models (ResNet18, 34, 50, 101, and 152). We also investigated ensemble models with patient clinical variables added to each CNN. Accuracy, precision, recall, specificity, F1 score, and area under the curve (AUC) were calculated as performance metrics. Furthermore, we statistically compared the accuracy of the image-only model with that of an ensemble model that included images plus patient factors, including effect size for each performance metric. Results: All metrics were improved in the ResNet34 ensemble model compared with the image-only model. The AUC score in the ensemble model was significantly improved compared with the image-only model (difference 0.004; 95% CI 0.002–0.0007; p = 0.0004, effect size: 0.871). Conclusions: This study revealed the additional effect of patient variables in identification of osteoporosis using deep CNNs with hip radiographs. Our results provided evidence that the patient variables had additive synergistic effects on the image in osteoporosis identification.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34441052</pmid><doi>10.3390/medicina57080846</doi><orcidid>https://orcid.org/0000-0002-7902-9994</orcidid><orcidid>https://orcid.org/0000-0001-7986-2735</orcidid><orcidid>https://orcid.org/0000-0003-1732-9307</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1648-9144
ispartof Medicina (Kaunas, Lithuania), 2021-08, Vol.57 (8), p.846
issn 1648-9144
1010-660X
1648-9144
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6178c982aff941d7a1574ecdd282b30a
source PubMed Central Free; Publicly Available Content Database
subjects Accuracy
Artificial intelligence
Body mass index
convolutional neural network
Datasets
Deep learning
effect size
ensemble model
Fractures
Hip joint
Neural networks
Orthopedics
Osteoporosis
patient variables
Patients
X-rays
title Effect of Patient Clinical Variables in Osteoporosis Classification Using Hip X-rays in Deep Learning Analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A36%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Patient%20Clinical%20Variables%20in%20Osteoporosis%20Classification%20Using%20Hip%20X-rays%20in%20Deep%20Learning%20Analysis&rft.jtitle=Medicina%20(Kaunas,%20Lithuania)&rft.au=Yamamoto,%20Norio&rft.date=2021-08-20&rft.volume=57&rft.issue=8&rft.spage=846&rft.pages=846-&rft.issn=1648-9144&rft.eissn=1648-9144&rft_id=info:doi/10.3390/medicina57080846&rft_dat=%3Cproquest_doaj_%3E2566028299%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c577t-6ddd88c2a00dba4f5f4f4d455bd8097257411839723f70118aef9390a2f1de793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2565386174&rft_id=info:pmid/34441052&rfr_iscdi=true