Loading…

Nonlinear Microwave Susceptibility Measurements Using Intermodulation Products on a Microfluidic Platform

Measuring the nonlinear responses of living cells has enabled an understanding of their behavior and functionality. Currently, this response has been studied at radio and optical frequencies, leaving an unexplored gap in the field of microwaves. This paper presents a system that combines microwave t...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2024, Vol.12, p.78014-78023
Main Authors: Palacios-Arias, Cesar, Jofre, Marc, Lopez, Maria-Jose, Akazzim, Youness, Jofre, Lluis, Romeu, Jordi, Jofre-Roca, Luis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c289t-299da8d7c6de191b005fb271d976c6ac280476de540d6b533a63b8d4da7669dd3
container_end_page 78023
container_issue
container_start_page 78014
container_title IEEE access
container_volume 12
creator Palacios-Arias, Cesar
Jofre, Marc
Lopez, Maria-Jose
Akazzim, Youness
Jofre, Lluis
Romeu, Jordi
Jofre-Roca, Luis
description Measuring the nonlinear responses of living cells has enabled an understanding of their behavior and functionality. Currently, this response has been studied at radio and optical frequencies, leaving an unexplored gap in the field of microwaves. This paper presents a system that combines microwave technology with a microfluidic platform to measure the nonlinear susceptibility of living organisms to electromagnetic fields. The applied technique involves feeding the system with two tones (2.1 GHz and 4 GHz) to generate third-order intermodulation products (PIMP) at 5.9 GHz. Nonlinear susceptibility was measured from the power levels of PIMP using a spectrum analyzer. Broadband electrodes based on the slot bowtie geometry were manufactured to operate at 5 GHz with a bandwidth of 4 GHz. Additionally, an engineering process is presented to optimize the power of the internal mixer of the spectrum analyzer to obtain the maximum dynamic range and improve the sensitivity of the system. Nonlinear susceptibility to microwaves was analyzed in four samples: pure ethanol, a mixture of ethanol and dimethyl sulfoxide (DMSO), live Escherichia coli (E. coli), and heat-killed E. coli. The results show that ethanol has zero nonlinear susceptibility, whereas when it is mixed with DMSO, a nonlinear response appears at a value of 4 dB with respect to the nonlinear susceptibility of the system in the absence of a sample. Finally, the nonlinear susceptibility of live E. coli to microwaves was detected, with a difference of 8 dB over the reference value and 6 dB with respect to the heat-killed E. coli sample.
doi_str_mv 10.1109/ACCESS.2024.3408081
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_617ad2f09e4543d389770a99f9d12360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10542997</ieee_id><doaj_id>oai_doaj_org_article_617ad2f09e4543d389770a99f9d12360</doaj_id><sourcerecordid>3064713458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-299da8d7c6de191b005fb271d976c6ac280476de540d6b533a63b8d4da7669dd3</originalsourceid><addsrcrecordid>eNpNUV1LwzAULaLg0P0CfSj43Jmv5uNxjKmDTQdzzyFt0pHRNjNplf17MztkebmHe885yc1JkgcIJhAC8TydzeabzQQBRCaYAA44vEpGCFKR4RzT6wt8m4xD2IN4eGzlbJTYd9fWtjXKpytbevejvk266UNpDp0tbG27Y7oyKvTeNKbtQroNtt2li7YzvnG6r1VnXZuufcRlHEesBqeq7q22ZbqOlMr55j65qVQdzPhc75Lty_xz9pYtP14Xs-kyKxEXXYaE0IprVlJtoIAFAHlVIAa1YLSkKpIAYXGWE6BpkWOsKC64JloxSoXW-C5ZDL7aqb08eNsof5ROWfnXcH4nle9sWRtJIVMaVUAYkhOsMReMASVEJTREmILo9TR4Hbz76k3o5N71vo3PlxhQwiAmOY8sPLDi1iF4U_3fCoE8RSSHiOQpInmOKKoeB5U1xlwochK_gOFfI12OAQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064713458</pqid></control><display><type>article</type><title>Nonlinear Microwave Susceptibility Measurements Using Intermodulation Products on a Microfluidic Platform</title><source>IEEE Xplore Open Access Journals</source><creator>Palacios-Arias, Cesar ; Jofre, Marc ; Lopez, Maria-Jose ; Akazzim, Youness ; Jofre, Lluis ; Romeu, Jordi ; Jofre-Roca, Luis</creator><creatorcontrib>Palacios-Arias, Cesar ; Jofre, Marc ; Lopez, Maria-Jose ; Akazzim, Youness ; Jofre, Lluis ; Romeu, Jordi ; Jofre-Roca, Luis</creatorcontrib><description>Measuring the nonlinear responses of living cells has enabled an understanding of their behavior and functionality. Currently, this response has been studied at radio and optical frequencies, leaving an unexplored gap in the field of microwaves. This paper presents a system that combines microwave technology with a microfluidic platform to measure the nonlinear susceptibility of living organisms to electromagnetic fields. The applied technique involves feeding the system with two tones (2.1 GHz and 4 GHz) to generate third-order intermodulation products (PIMP) at 5.9 GHz. Nonlinear susceptibility was measured from the power levels of PIMP using a spectrum analyzer. Broadband electrodes based on the slot bowtie geometry were manufactured to operate at 5 GHz with a bandwidth of 4 GHz. Additionally, an engineering process is presented to optimize the power of the internal mixer of the spectrum analyzer to obtain the maximum dynamic range and improve the sensitivity of the system. Nonlinear susceptibility to microwaves was analyzed in four samples: pure ethanol, a mixture of ethanol and dimethyl sulfoxide (DMSO), live Escherichia coli (E. coli), and heat-killed E. coli. The results show that ethanol has zero nonlinear susceptibility, whereas when it is mixed with DMSO, a nonlinear response appears at a value of 4 dB with respect to the nonlinear susceptibility of the system in the absence of a sample. Finally, the nonlinear susceptibility of live E. coli to microwaves was detected, with a difference of 8 dB over the reference value and 6 dB with respect to the heat-killed E. coli sample.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3408081</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Broadband ; Dimethyl sulfoxide ; Dynamic range ; E coli ; Electromagnetic fields ; Electromagnetic heating ; Ethanol ; Intermodulation ; intermodulation products ; microfluidic ; Microfluidics ; microwave ; Microwave measurement ; Microwaves ; Mixers ; non-invasive ; Nonlinear optics ; Nonlinear response ; nonlinear susceptibility ; Phase noise ; power ; Spectrum analysers ; spectrum analyzer</subject><ispartof>IEEE access, 2024, Vol.12, p.78014-78023</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-299da8d7c6de191b005fb271d976c6ac280476de540d6b533a63b8d4da7669dd3</cites><orcidid>0000-0003-1298-8434 ; 0000-0002-0547-901X ; 0000-0003-0197-5961 ; 0000-0002-2286-7479 ; 0000-0002-7957-4044 ; 0000-0002-8912-6595 ; 0000-0003-2437-259X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10542997$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Palacios-Arias, Cesar</creatorcontrib><creatorcontrib>Jofre, Marc</creatorcontrib><creatorcontrib>Lopez, Maria-Jose</creatorcontrib><creatorcontrib>Akazzim, Youness</creatorcontrib><creatorcontrib>Jofre, Lluis</creatorcontrib><creatorcontrib>Romeu, Jordi</creatorcontrib><creatorcontrib>Jofre-Roca, Luis</creatorcontrib><title>Nonlinear Microwave Susceptibility Measurements Using Intermodulation Products on a Microfluidic Platform</title><title>IEEE access</title><addtitle>Access</addtitle><description>Measuring the nonlinear responses of living cells has enabled an understanding of their behavior and functionality. Currently, this response has been studied at radio and optical frequencies, leaving an unexplored gap in the field of microwaves. This paper presents a system that combines microwave technology with a microfluidic platform to measure the nonlinear susceptibility of living organisms to electromagnetic fields. The applied technique involves feeding the system with two tones (2.1 GHz and 4 GHz) to generate third-order intermodulation products (PIMP) at 5.9 GHz. Nonlinear susceptibility was measured from the power levels of PIMP using a spectrum analyzer. Broadband electrodes based on the slot bowtie geometry were manufactured to operate at 5 GHz with a bandwidth of 4 GHz. Additionally, an engineering process is presented to optimize the power of the internal mixer of the spectrum analyzer to obtain the maximum dynamic range and improve the sensitivity of the system. Nonlinear susceptibility to microwaves was analyzed in four samples: pure ethanol, a mixture of ethanol and dimethyl sulfoxide (DMSO), live Escherichia coli (E. coli), and heat-killed E. coli. The results show that ethanol has zero nonlinear susceptibility, whereas when it is mixed with DMSO, a nonlinear response appears at a value of 4 dB with respect to the nonlinear susceptibility of the system in the absence of a sample. Finally, the nonlinear susceptibility of live E. coli to microwaves was detected, with a difference of 8 dB over the reference value and 6 dB with respect to the heat-killed E. coli sample.</description><subject>Broadband</subject><subject>Dimethyl sulfoxide</subject><subject>Dynamic range</subject><subject>E coli</subject><subject>Electromagnetic fields</subject><subject>Electromagnetic heating</subject><subject>Ethanol</subject><subject>Intermodulation</subject><subject>intermodulation products</subject><subject>microfluidic</subject><subject>Microfluidics</subject><subject>microwave</subject><subject>Microwave measurement</subject><subject>Microwaves</subject><subject>Mixers</subject><subject>non-invasive</subject><subject>Nonlinear optics</subject><subject>Nonlinear response</subject><subject>nonlinear susceptibility</subject><subject>Phase noise</subject><subject>power</subject><subject>Spectrum analysers</subject><subject>spectrum analyzer</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1LwzAULaLg0P0CfSj43Jmv5uNxjKmDTQdzzyFt0pHRNjNplf17MztkebmHe885yc1JkgcIJhAC8TydzeabzQQBRCaYAA44vEpGCFKR4RzT6wt8m4xD2IN4eGzlbJTYd9fWtjXKpytbevejvk266UNpDp0tbG27Y7oyKvTeNKbtQroNtt2li7YzvnG6r1VnXZuufcRlHEesBqeq7q22ZbqOlMr55j65qVQdzPhc75Lty_xz9pYtP14Xs-kyKxEXXYaE0IprVlJtoIAFAHlVIAa1YLSkKpIAYXGWE6BpkWOsKC64JloxSoXW-C5ZDL7aqb08eNsof5ROWfnXcH4nle9sWRtJIVMaVUAYkhOsMReMASVEJTREmILo9TR4Hbz76k3o5N71vo3PlxhQwiAmOY8sPLDi1iF4U_3fCoE8RSSHiOQpInmOKKoeB5U1xlwochK_gOFfI12OAQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Palacios-Arias, Cesar</creator><creator>Jofre, Marc</creator><creator>Lopez, Maria-Jose</creator><creator>Akazzim, Youness</creator><creator>Jofre, Lluis</creator><creator>Romeu, Jordi</creator><creator>Jofre-Roca, Luis</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1298-8434</orcidid><orcidid>https://orcid.org/0000-0002-0547-901X</orcidid><orcidid>https://orcid.org/0000-0003-0197-5961</orcidid><orcidid>https://orcid.org/0000-0002-2286-7479</orcidid><orcidid>https://orcid.org/0000-0002-7957-4044</orcidid><orcidid>https://orcid.org/0000-0002-8912-6595</orcidid><orcidid>https://orcid.org/0000-0003-2437-259X</orcidid></search><sort><creationdate>2024</creationdate><title>Nonlinear Microwave Susceptibility Measurements Using Intermodulation Products on a Microfluidic Platform</title><author>Palacios-Arias, Cesar ; Jofre, Marc ; Lopez, Maria-Jose ; Akazzim, Youness ; Jofre, Lluis ; Romeu, Jordi ; Jofre-Roca, Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-299da8d7c6de191b005fb271d976c6ac280476de540d6b533a63b8d4da7669dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Broadband</topic><topic>Dimethyl sulfoxide</topic><topic>Dynamic range</topic><topic>E coli</topic><topic>Electromagnetic fields</topic><topic>Electromagnetic heating</topic><topic>Ethanol</topic><topic>Intermodulation</topic><topic>intermodulation products</topic><topic>microfluidic</topic><topic>Microfluidics</topic><topic>microwave</topic><topic>Microwave measurement</topic><topic>Microwaves</topic><topic>Mixers</topic><topic>non-invasive</topic><topic>Nonlinear optics</topic><topic>Nonlinear response</topic><topic>nonlinear susceptibility</topic><topic>Phase noise</topic><topic>power</topic><topic>Spectrum analysers</topic><topic>spectrum analyzer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palacios-Arias, Cesar</creatorcontrib><creatorcontrib>Jofre, Marc</creatorcontrib><creatorcontrib>Lopez, Maria-Jose</creatorcontrib><creatorcontrib>Akazzim, Youness</creatorcontrib><creatorcontrib>Jofre, Lluis</creatorcontrib><creatorcontrib>Romeu, Jordi</creatorcontrib><creatorcontrib>Jofre-Roca, Luis</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palacios-Arias, Cesar</au><au>Jofre, Marc</au><au>Lopez, Maria-Jose</au><au>Akazzim, Youness</au><au>Jofre, Lluis</au><au>Romeu, Jordi</au><au>Jofre-Roca, Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear Microwave Susceptibility Measurements Using Intermodulation Products on a Microfluidic Platform</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>78014</spage><epage>78023</epage><pages>78014-78023</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Measuring the nonlinear responses of living cells has enabled an understanding of their behavior and functionality. Currently, this response has been studied at radio and optical frequencies, leaving an unexplored gap in the field of microwaves. This paper presents a system that combines microwave technology with a microfluidic platform to measure the nonlinear susceptibility of living organisms to electromagnetic fields. The applied technique involves feeding the system with two tones (2.1 GHz and 4 GHz) to generate third-order intermodulation products (PIMP) at 5.9 GHz. Nonlinear susceptibility was measured from the power levels of PIMP using a spectrum analyzer. Broadband electrodes based on the slot bowtie geometry were manufactured to operate at 5 GHz with a bandwidth of 4 GHz. Additionally, an engineering process is presented to optimize the power of the internal mixer of the spectrum analyzer to obtain the maximum dynamic range and improve the sensitivity of the system. Nonlinear susceptibility to microwaves was analyzed in four samples: pure ethanol, a mixture of ethanol and dimethyl sulfoxide (DMSO), live Escherichia coli (E. coli), and heat-killed E. coli. The results show that ethanol has zero nonlinear susceptibility, whereas when it is mixed with DMSO, a nonlinear response appears at a value of 4 dB with respect to the nonlinear susceptibility of the system in the absence of a sample. Finally, the nonlinear susceptibility of live E. coli to microwaves was detected, with a difference of 8 dB over the reference value and 6 dB with respect to the heat-killed E. coli sample.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3408081</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1298-8434</orcidid><orcidid>https://orcid.org/0000-0002-0547-901X</orcidid><orcidid>https://orcid.org/0000-0003-0197-5961</orcidid><orcidid>https://orcid.org/0000-0002-2286-7479</orcidid><orcidid>https://orcid.org/0000-0002-7957-4044</orcidid><orcidid>https://orcid.org/0000-0002-8912-6595</orcidid><orcidid>https://orcid.org/0000-0003-2437-259X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.78014-78023
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_617ad2f09e4543d389770a99f9d12360
source IEEE Xplore Open Access Journals
subjects Broadband
Dimethyl sulfoxide
Dynamic range
E coli
Electromagnetic fields
Electromagnetic heating
Ethanol
Intermodulation
intermodulation products
microfluidic
Microfluidics
microwave
Microwave measurement
Microwaves
Mixers
non-invasive
Nonlinear optics
Nonlinear response
nonlinear susceptibility
Phase noise
power
Spectrum analysers
spectrum analyzer
title Nonlinear Microwave Susceptibility Measurements Using Intermodulation Products on a Microfluidic Platform
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A49%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20Microwave%20Susceptibility%20Measurements%20Using%20Intermodulation%20Products%20on%20a%20Microfluidic%20Platform&rft.jtitle=IEEE%20access&rft.au=Palacios-Arias,%20Cesar&rft.date=2024&rft.volume=12&rft.spage=78014&rft.epage=78023&rft.pages=78014-78023&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3408081&rft_dat=%3Cproquest_doaj_%3E3064713458%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-299da8d7c6de191b005fb271d976c6ac280476de540d6b533a63b8d4da7669dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3064713458&rft_id=info:pmid/&rft_ieee_id=10542997&rfr_iscdi=true