Loading…
Nonlinear Microwave Susceptibility Measurements Using Intermodulation Products on a Microfluidic Platform
Measuring the nonlinear responses of living cells has enabled an understanding of their behavior and functionality. Currently, this response has been studied at radio and optical frequencies, leaving an unexplored gap in the field of microwaves. This paper presents a system that combines microwave t...
Saved in:
Published in: | IEEE access 2024, Vol.12, p.78014-78023 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c289t-299da8d7c6de191b005fb271d976c6ac280476de540d6b533a63b8d4da7669dd3 |
container_end_page | 78023 |
container_issue | |
container_start_page | 78014 |
container_title | IEEE access |
container_volume | 12 |
creator | Palacios-Arias, Cesar Jofre, Marc Lopez, Maria-Jose Akazzim, Youness Jofre, Lluis Romeu, Jordi Jofre-Roca, Luis |
description | Measuring the nonlinear responses of living cells has enabled an understanding of their behavior and functionality. Currently, this response has been studied at radio and optical frequencies, leaving an unexplored gap in the field of microwaves. This paper presents a system that combines microwave technology with a microfluidic platform to measure the nonlinear susceptibility of living organisms to electromagnetic fields. The applied technique involves feeding the system with two tones (2.1 GHz and 4 GHz) to generate third-order intermodulation products (PIMP) at 5.9 GHz. Nonlinear susceptibility was measured from the power levels of PIMP using a spectrum analyzer. Broadband electrodes based on the slot bowtie geometry were manufactured to operate at 5 GHz with a bandwidth of 4 GHz. Additionally, an engineering process is presented to optimize the power of the internal mixer of the spectrum analyzer to obtain the maximum dynamic range and improve the sensitivity of the system. Nonlinear susceptibility to microwaves was analyzed in four samples: pure ethanol, a mixture of ethanol and dimethyl sulfoxide (DMSO), live Escherichia coli (E. coli), and heat-killed E. coli. The results show that ethanol has zero nonlinear susceptibility, whereas when it is mixed with DMSO, a nonlinear response appears at a value of 4 dB with respect to the nonlinear susceptibility of the system in the absence of a sample. Finally, the nonlinear susceptibility of live E. coli to microwaves was detected, with a difference of 8 dB over the reference value and 6 dB with respect to the heat-killed E. coli sample. |
doi_str_mv | 10.1109/ACCESS.2024.3408081 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_617ad2f09e4543d389770a99f9d12360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10542997</ieee_id><doaj_id>oai_doaj_org_article_617ad2f09e4543d389770a99f9d12360</doaj_id><sourcerecordid>3064713458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-299da8d7c6de191b005fb271d976c6ac280476de540d6b533a63b8d4da7669dd3</originalsourceid><addsrcrecordid>eNpNUV1LwzAULaLg0P0CfSj43Jmv5uNxjKmDTQdzzyFt0pHRNjNplf17MztkebmHe885yc1JkgcIJhAC8TydzeabzQQBRCaYAA44vEpGCFKR4RzT6wt8m4xD2IN4eGzlbJTYd9fWtjXKpytbevejvk266UNpDp0tbG27Y7oyKvTeNKbtQroNtt2li7YzvnG6r1VnXZuufcRlHEesBqeq7q22ZbqOlMr55j65qVQdzPhc75Lty_xz9pYtP14Xs-kyKxEXXYaE0IprVlJtoIAFAHlVIAa1YLSkKpIAYXGWE6BpkWOsKC64JloxSoXW-C5ZDL7aqb08eNsof5ROWfnXcH4nle9sWRtJIVMaVUAYkhOsMReMASVEJTREmILo9TR4Hbz76k3o5N71vo3PlxhQwiAmOY8sPLDi1iF4U_3fCoE8RSSHiOQpInmOKKoeB5U1xlwochK_gOFfI12OAQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064713458</pqid></control><display><type>article</type><title>Nonlinear Microwave Susceptibility Measurements Using Intermodulation Products on a Microfluidic Platform</title><source>IEEE Xplore Open Access Journals</source><creator>Palacios-Arias, Cesar ; Jofre, Marc ; Lopez, Maria-Jose ; Akazzim, Youness ; Jofre, Lluis ; Romeu, Jordi ; Jofre-Roca, Luis</creator><creatorcontrib>Palacios-Arias, Cesar ; Jofre, Marc ; Lopez, Maria-Jose ; Akazzim, Youness ; Jofre, Lluis ; Romeu, Jordi ; Jofre-Roca, Luis</creatorcontrib><description>Measuring the nonlinear responses of living cells has enabled an understanding of their behavior and functionality. Currently, this response has been studied at radio and optical frequencies, leaving an unexplored gap in the field of microwaves. This paper presents a system that combines microwave technology with a microfluidic platform to measure the nonlinear susceptibility of living organisms to electromagnetic fields. The applied technique involves feeding the system with two tones (2.1 GHz and 4 GHz) to generate third-order intermodulation products (PIMP) at 5.9 GHz. Nonlinear susceptibility was measured from the power levels of PIMP using a spectrum analyzer. Broadband electrodes based on the slot bowtie geometry were manufactured to operate at 5 GHz with a bandwidth of 4 GHz. Additionally, an engineering process is presented to optimize the power of the internal mixer of the spectrum analyzer to obtain the maximum dynamic range and improve the sensitivity of the system. Nonlinear susceptibility to microwaves was analyzed in four samples: pure ethanol, a mixture of ethanol and dimethyl sulfoxide (DMSO), live Escherichia coli (E. coli), and heat-killed E. coli. The results show that ethanol has zero nonlinear susceptibility, whereas when it is mixed with DMSO, a nonlinear response appears at a value of 4 dB with respect to the nonlinear susceptibility of the system in the absence of a sample. Finally, the nonlinear susceptibility of live E. coli to microwaves was detected, with a difference of 8 dB over the reference value and 6 dB with respect to the heat-killed E. coli sample.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3408081</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Broadband ; Dimethyl sulfoxide ; Dynamic range ; E coli ; Electromagnetic fields ; Electromagnetic heating ; Ethanol ; Intermodulation ; intermodulation products ; microfluidic ; Microfluidics ; microwave ; Microwave measurement ; Microwaves ; Mixers ; non-invasive ; Nonlinear optics ; Nonlinear response ; nonlinear susceptibility ; Phase noise ; power ; Spectrum analysers ; spectrum analyzer</subject><ispartof>IEEE access, 2024, Vol.12, p.78014-78023</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c289t-299da8d7c6de191b005fb271d976c6ac280476de540d6b533a63b8d4da7669dd3</cites><orcidid>0000-0003-1298-8434 ; 0000-0002-0547-901X ; 0000-0003-0197-5961 ; 0000-0002-2286-7479 ; 0000-0002-7957-4044 ; 0000-0002-8912-6595 ; 0000-0003-2437-259X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10542997$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Palacios-Arias, Cesar</creatorcontrib><creatorcontrib>Jofre, Marc</creatorcontrib><creatorcontrib>Lopez, Maria-Jose</creatorcontrib><creatorcontrib>Akazzim, Youness</creatorcontrib><creatorcontrib>Jofre, Lluis</creatorcontrib><creatorcontrib>Romeu, Jordi</creatorcontrib><creatorcontrib>Jofre-Roca, Luis</creatorcontrib><title>Nonlinear Microwave Susceptibility Measurements Using Intermodulation Products on a Microfluidic Platform</title><title>IEEE access</title><addtitle>Access</addtitle><description>Measuring the nonlinear responses of living cells has enabled an understanding of their behavior and functionality. Currently, this response has been studied at radio and optical frequencies, leaving an unexplored gap in the field of microwaves. This paper presents a system that combines microwave technology with a microfluidic platform to measure the nonlinear susceptibility of living organisms to electromagnetic fields. The applied technique involves feeding the system with two tones (2.1 GHz and 4 GHz) to generate third-order intermodulation products (PIMP) at 5.9 GHz. Nonlinear susceptibility was measured from the power levels of PIMP using a spectrum analyzer. Broadband electrodes based on the slot bowtie geometry were manufactured to operate at 5 GHz with a bandwidth of 4 GHz. Additionally, an engineering process is presented to optimize the power of the internal mixer of the spectrum analyzer to obtain the maximum dynamic range and improve the sensitivity of the system. Nonlinear susceptibility to microwaves was analyzed in four samples: pure ethanol, a mixture of ethanol and dimethyl sulfoxide (DMSO), live Escherichia coli (E. coli), and heat-killed E. coli. The results show that ethanol has zero nonlinear susceptibility, whereas when it is mixed with DMSO, a nonlinear response appears at a value of 4 dB with respect to the nonlinear susceptibility of the system in the absence of a sample. Finally, the nonlinear susceptibility of live E. coli to microwaves was detected, with a difference of 8 dB over the reference value and 6 dB with respect to the heat-killed E. coli sample.</description><subject>Broadband</subject><subject>Dimethyl sulfoxide</subject><subject>Dynamic range</subject><subject>E coli</subject><subject>Electromagnetic fields</subject><subject>Electromagnetic heating</subject><subject>Ethanol</subject><subject>Intermodulation</subject><subject>intermodulation products</subject><subject>microfluidic</subject><subject>Microfluidics</subject><subject>microwave</subject><subject>Microwave measurement</subject><subject>Microwaves</subject><subject>Mixers</subject><subject>non-invasive</subject><subject>Nonlinear optics</subject><subject>Nonlinear response</subject><subject>nonlinear susceptibility</subject><subject>Phase noise</subject><subject>power</subject><subject>Spectrum analysers</subject><subject>spectrum analyzer</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1LwzAULaLg0P0CfSj43Jmv5uNxjKmDTQdzzyFt0pHRNjNplf17MztkebmHe885yc1JkgcIJhAC8TydzeabzQQBRCaYAA44vEpGCFKR4RzT6wt8m4xD2IN4eGzlbJTYd9fWtjXKpytbevejvk266UNpDp0tbG27Y7oyKvTeNKbtQroNtt2li7YzvnG6r1VnXZuufcRlHEesBqeq7q22ZbqOlMr55j65qVQdzPhc75Lty_xz9pYtP14Xs-kyKxEXXYaE0IprVlJtoIAFAHlVIAa1YLSkKpIAYXGWE6BpkWOsKC64JloxSoXW-C5ZDL7aqb08eNsof5ROWfnXcH4nle9sWRtJIVMaVUAYkhOsMReMASVEJTREmILo9TR4Hbz76k3o5N71vo3PlxhQwiAmOY8sPLDi1iF4U_3fCoE8RSSHiOQpInmOKKoeB5U1xlwochK_gOFfI12OAQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Palacios-Arias, Cesar</creator><creator>Jofre, Marc</creator><creator>Lopez, Maria-Jose</creator><creator>Akazzim, Youness</creator><creator>Jofre, Lluis</creator><creator>Romeu, Jordi</creator><creator>Jofre-Roca, Luis</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1298-8434</orcidid><orcidid>https://orcid.org/0000-0002-0547-901X</orcidid><orcidid>https://orcid.org/0000-0003-0197-5961</orcidid><orcidid>https://orcid.org/0000-0002-2286-7479</orcidid><orcidid>https://orcid.org/0000-0002-7957-4044</orcidid><orcidid>https://orcid.org/0000-0002-8912-6595</orcidid><orcidid>https://orcid.org/0000-0003-2437-259X</orcidid></search><sort><creationdate>2024</creationdate><title>Nonlinear Microwave Susceptibility Measurements Using Intermodulation Products on a Microfluidic Platform</title><author>Palacios-Arias, Cesar ; Jofre, Marc ; Lopez, Maria-Jose ; Akazzim, Youness ; Jofre, Lluis ; Romeu, Jordi ; Jofre-Roca, Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-299da8d7c6de191b005fb271d976c6ac280476de540d6b533a63b8d4da7669dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Broadband</topic><topic>Dimethyl sulfoxide</topic><topic>Dynamic range</topic><topic>E coli</topic><topic>Electromagnetic fields</topic><topic>Electromagnetic heating</topic><topic>Ethanol</topic><topic>Intermodulation</topic><topic>intermodulation products</topic><topic>microfluidic</topic><topic>Microfluidics</topic><topic>microwave</topic><topic>Microwave measurement</topic><topic>Microwaves</topic><topic>Mixers</topic><topic>non-invasive</topic><topic>Nonlinear optics</topic><topic>Nonlinear response</topic><topic>nonlinear susceptibility</topic><topic>Phase noise</topic><topic>power</topic><topic>Spectrum analysers</topic><topic>spectrum analyzer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palacios-Arias, Cesar</creatorcontrib><creatorcontrib>Jofre, Marc</creatorcontrib><creatorcontrib>Lopez, Maria-Jose</creatorcontrib><creatorcontrib>Akazzim, Youness</creatorcontrib><creatorcontrib>Jofre, Lluis</creatorcontrib><creatorcontrib>Romeu, Jordi</creatorcontrib><creatorcontrib>Jofre-Roca, Luis</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palacios-Arias, Cesar</au><au>Jofre, Marc</au><au>Lopez, Maria-Jose</au><au>Akazzim, Youness</au><au>Jofre, Lluis</au><au>Romeu, Jordi</au><au>Jofre-Roca, Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear Microwave Susceptibility Measurements Using Intermodulation Products on a Microfluidic Platform</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>78014</spage><epage>78023</epage><pages>78014-78023</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Measuring the nonlinear responses of living cells has enabled an understanding of their behavior and functionality. Currently, this response has been studied at radio and optical frequencies, leaving an unexplored gap in the field of microwaves. This paper presents a system that combines microwave technology with a microfluidic platform to measure the nonlinear susceptibility of living organisms to electromagnetic fields. The applied technique involves feeding the system with two tones (2.1 GHz and 4 GHz) to generate third-order intermodulation products (PIMP) at 5.9 GHz. Nonlinear susceptibility was measured from the power levels of PIMP using a spectrum analyzer. Broadband electrodes based on the slot bowtie geometry were manufactured to operate at 5 GHz with a bandwidth of 4 GHz. Additionally, an engineering process is presented to optimize the power of the internal mixer of the spectrum analyzer to obtain the maximum dynamic range and improve the sensitivity of the system. Nonlinear susceptibility to microwaves was analyzed in four samples: pure ethanol, a mixture of ethanol and dimethyl sulfoxide (DMSO), live Escherichia coli (E. coli), and heat-killed E. coli. The results show that ethanol has zero nonlinear susceptibility, whereas when it is mixed with DMSO, a nonlinear response appears at a value of 4 dB with respect to the nonlinear susceptibility of the system in the absence of a sample. Finally, the nonlinear susceptibility of live E. coli to microwaves was detected, with a difference of 8 dB over the reference value and 6 dB with respect to the heat-killed E. coli sample.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3408081</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1298-8434</orcidid><orcidid>https://orcid.org/0000-0002-0547-901X</orcidid><orcidid>https://orcid.org/0000-0003-0197-5961</orcidid><orcidid>https://orcid.org/0000-0002-2286-7479</orcidid><orcidid>https://orcid.org/0000-0002-7957-4044</orcidid><orcidid>https://orcid.org/0000-0002-8912-6595</orcidid><orcidid>https://orcid.org/0000-0003-2437-259X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.78014-78023 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_617ad2f09e4543d389770a99f9d12360 |
source | IEEE Xplore Open Access Journals |
subjects | Broadband Dimethyl sulfoxide Dynamic range E coli Electromagnetic fields Electromagnetic heating Ethanol Intermodulation intermodulation products microfluidic Microfluidics microwave Microwave measurement Microwaves Mixers non-invasive Nonlinear optics Nonlinear response nonlinear susceptibility Phase noise power Spectrum analysers spectrum analyzer |
title | Nonlinear Microwave Susceptibility Measurements Using Intermodulation Products on a Microfluidic Platform |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A49%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20Microwave%20Susceptibility%20Measurements%20Using%20Intermodulation%20Products%20on%20a%20Microfluidic%20Platform&rft.jtitle=IEEE%20access&rft.au=Palacios-Arias,%20Cesar&rft.date=2024&rft.volume=12&rft.spage=78014&rft.epage=78023&rft.pages=78014-78023&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3408081&rft_dat=%3Cproquest_doaj_%3E3064713458%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c289t-299da8d7c6de191b005fb271d976c6ac280476de540d6b533a63b8d4da7669dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3064713458&rft_id=info:pmid/&rft_ieee_id=10542997&rfr_iscdi=true |