Loading…

An Enhanced Wu-Huberman Algorithm with Pole Point Selection Strategy

The Wu-Huberman clustering is a typical linear algorithm among many clustering algorithms, which illustrates data points relationship as an artificial “circuit” and then applies the Kirchhoff equations to get the voltage value on the complex circuit. However, the performance of the algorithm is cruc...

Full description

Saved in:
Bibliographic Details
Published in:Abstract and Applied Analysis 2013-01, Vol.2013 (2013), p.405-410-743
Main Authors: Sun, Yan, Ding, Shuxue
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a581t-9f391fdde5ab7c0a7960761cb7c1bc1c8c277b36077fb3547e04ed35bb5c2a243
container_end_page 410-743
container_issue 2013
container_start_page 405
container_title Abstract and Applied Analysis
container_volume 2013
creator Sun, Yan
Ding, Shuxue
description The Wu-Huberman clustering is a typical linear algorithm among many clustering algorithms, which illustrates data points relationship as an artificial “circuit” and then applies the Kirchhoff equations to get the voltage value on the complex circuit. However, the performance of the algorithm is crucially dependent on the selection of pole points. In this paper, we present a novel pole point selection strategy for the Wu-Huberman algorithm (named as PSWH algorithm), which aims at preserving the merit and increasing the robustness of the algorithm. The pole point selection strategy is proposed to filter the pole point by introducing sparse rate. Experiments results demonstrate that the PSWH algorithm is significantly improved in clustering accuracy and efficiency compared with the original Wu-Huberman algorithm.
doi_str_mv 10.1155/2013/589386
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_6193aa5c02754a24973d3c61e477f432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A369794520</galeid><airiti_id>P20160825001_201312_201609070065_201609070065_405_410_743</airiti_id><doaj_id>oai_doaj_org_article_6193aa5c02754a24973d3c61e477f432</doaj_id><sourcerecordid>A369794520</sourcerecordid><originalsourceid>FETCH-LOGICAL-a581t-9f391fdde5ab7c0a7960761cb7c1bc1c8c277b36077fb3547e04ed35bb5c2a243</originalsourceid><addsrcrecordid>eNqFkk1r3DAQhk1poWnaU88FQy8lxcnoy7JuXbZpE1joQhp6FLIs72qxpVS2Cfn3nV0vW9JLMfp69c4zHjFZ9p7AJSFCXFEg7EpUilXli-yMlJUsgIN6iXuoRMGYFK-zN8OwAwAmOT_Lvi5Cfh22JljX5L-m4maqXepNyBfdJiY_bvv8Eed8HTuHkw9jfuc6Z0cfQ343JjO6zdPb7FVrusG9O67n2f2365_Lm2L14_vtcrEqjKjIWKiWKdI2jROmlhaMVCXIklg8kNoSW1kqZc1QlG3NBJcOuGuYqGthqaGcnWe3M7eJZqcfku9NetLReH0QYtpok0ZvO6dLopgxwgKVgmOskqxhtiSOI5wziqwvM-shxR3W4ybb-eYZdHm_OqrHxRijCVOMI04qRHw6IX5Pbhh17wfrus4EF6dBE8EIUFYesn38x7qLUwr4WJpwWgGhVAK6LmfXxmAJPrQRH9ji17je2xhc61FfsFJJxQXdB3yeA2yKw5Bce_p_AnrfEXrfEXruCHRfzO6tD4159P8xf5jNDi2uNSczrxjh-9Tr-d54bBP_t541UkqoqAAgByKh-iApkACleH7ggAPzS87YHz6E0Sw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1428012270</pqid></control><display><type>article</type><title>An Enhanced Wu-Huberman Algorithm with Pole Point Selection Strategy</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Sun, Yan ; Ding, Shuxue</creator><contributor>Xie, Fuding</contributor><creatorcontrib>Sun, Yan ; Ding, Shuxue ; Xie, Fuding</creatorcontrib><description>The Wu-Huberman clustering is a typical linear algorithm among many clustering algorithms, which illustrates data points relationship as an artificial “circuit” and then applies the Kirchhoff equations to get the voltage value on the complex circuit. However, the performance of the algorithm is crucially dependent on the selection of pole points. In this paper, we present a novel pole point selection strategy for the Wu-Huberman algorithm (named as PSWH algorithm), which aims at preserving the merit and increasing the robustness of the algorithm. The pole point selection strategy is proposed to filter the pole point by introducing sparse rate. Experiments results demonstrate that the PSWH algorithm is significantly improved in clustering accuracy and efficiency compared with the original Wu-Huberman algorithm.</description><identifier>ISSN: 1085-3375</identifier><identifier>EISSN: 1687-0409</identifier><identifier>DOI: 10.1155/2013/589386</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Limiteds</publisher><subject>Accuracy ; Algorithms ; Circuits ; Clustering ; Clustering (Computers) ; Community ; Data mining ; Mathematical analysis ; Mathematical research ; Poles ; Robustness ; Statistical analysis ; Statistical methods ; Strategy ; Studies ; Voltage</subject><ispartof>Abstract and Applied Analysis, 2013-01, Vol.2013 (2013), p.405-410-743</ispartof><rights>Copyright © 2013 Yan Sun and Shuxue Ding.</rights><rights>COPYRIGHT 2013 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2013 Yan Sun and Shuxue Ding. Yan Sun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright 2013 Hindawi Publishing Corporation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a581t-9f391fdde5ab7c0a7960761cb7c1bc1c8c277b36077fb3547e04ed35bb5c2a243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1428012270/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1428012270?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,37013,44590,75126</link.rule.ids></links><search><contributor>Xie, Fuding</contributor><creatorcontrib>Sun, Yan</creatorcontrib><creatorcontrib>Ding, Shuxue</creatorcontrib><title>An Enhanced Wu-Huberman Algorithm with Pole Point Selection Strategy</title><title>Abstract and Applied Analysis</title><description>The Wu-Huberman clustering is a typical linear algorithm among many clustering algorithms, which illustrates data points relationship as an artificial “circuit” and then applies the Kirchhoff equations to get the voltage value on the complex circuit. However, the performance of the algorithm is crucially dependent on the selection of pole points. In this paper, we present a novel pole point selection strategy for the Wu-Huberman algorithm (named as PSWH algorithm), which aims at preserving the merit and increasing the robustness of the algorithm. The pole point selection strategy is proposed to filter the pole point by introducing sparse rate. Experiments results demonstrate that the PSWH algorithm is significantly improved in clustering accuracy and efficiency compared with the original Wu-Huberman algorithm.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Circuits</subject><subject>Clustering</subject><subject>Clustering (Computers)</subject><subject>Community</subject><subject>Data mining</subject><subject>Mathematical analysis</subject><subject>Mathematical research</subject><subject>Poles</subject><subject>Robustness</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Strategy</subject><subject>Studies</subject><subject>Voltage</subject><issn>1085-3375</issn><issn>1687-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkk1r3DAQhk1poWnaU88FQy8lxcnoy7JuXbZpE1joQhp6FLIs72qxpVS2Cfn3nV0vW9JLMfp69c4zHjFZ9p7AJSFCXFEg7EpUilXli-yMlJUsgIN6iXuoRMGYFK-zN8OwAwAmOT_Lvi5Cfh22JljX5L-m4maqXepNyBfdJiY_bvv8Eed8HTuHkw9jfuc6Z0cfQ343JjO6zdPb7FVrusG9O67n2f2365_Lm2L14_vtcrEqjKjIWKiWKdI2jROmlhaMVCXIklg8kNoSW1kqZc1QlG3NBJcOuGuYqGthqaGcnWe3M7eJZqcfku9NetLReH0QYtpok0ZvO6dLopgxwgKVgmOskqxhtiSOI5wziqwvM-shxR3W4ybb-eYZdHm_OqrHxRijCVOMI04qRHw6IX5Pbhh17wfrus4EF6dBE8EIUFYesn38x7qLUwr4WJpwWgGhVAK6LmfXxmAJPrQRH9ji17je2xhc61FfsFJJxQXdB3yeA2yKw5Bce_p_AnrfEXrfEXruCHRfzO6tD4159P8xf5jNDi2uNSczrxjh-9Tr-d54bBP_t541UkqoqAAgByKh-iApkACleH7ggAPzS87YHz6E0Sw</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Sun, Yan</creator><creator>Ding, Shuxue</creator><general>Hindawi Limiteds</general><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>188</scope><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20130101</creationdate><title>An Enhanced Wu-Huberman Algorithm with Pole Point Selection Strategy</title><author>Sun, Yan ; Ding, Shuxue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a581t-9f391fdde5ab7c0a7960761cb7c1bc1c8c277b36077fb3547e04ed35bb5c2a243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Circuits</topic><topic>Clustering</topic><topic>Clustering (Computers)</topic><topic>Community</topic><topic>Data mining</topic><topic>Mathematical analysis</topic><topic>Mathematical research</topic><topic>Poles</topic><topic>Robustness</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Strategy</topic><topic>Studies</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yan</creatorcontrib><creatorcontrib>Ding, Shuxue</creatorcontrib><collection>Airiti Library</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Abstract and Applied Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yan</au><au>Ding, Shuxue</au><au>Xie, Fuding</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Enhanced Wu-Huberman Algorithm with Pole Point Selection Strategy</atitle><jtitle>Abstract and Applied Analysis</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>405</spage><epage>410-743</epage><pages>405-410-743</pages><issn>1085-3375</issn><eissn>1687-0409</eissn><abstract>The Wu-Huberman clustering is a typical linear algorithm among many clustering algorithms, which illustrates data points relationship as an artificial “circuit” and then applies the Kirchhoff equations to get the voltage value on the complex circuit. However, the performance of the algorithm is crucially dependent on the selection of pole points. In this paper, we present a novel pole point selection strategy for the Wu-Huberman algorithm (named as PSWH algorithm), which aims at preserving the merit and increasing the robustness of the algorithm. The pole point selection strategy is proposed to filter the pole point by introducing sparse rate. Experiments results demonstrate that the PSWH algorithm is significantly improved in clustering accuracy and efficiency compared with the original Wu-Huberman algorithm.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Limiteds</pub><doi>10.1155/2013/589386</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1085-3375
ispartof Abstract and Applied Analysis, 2013-01, Vol.2013 (2013), p.405-410-743
issn 1085-3375
1687-0409
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_6193aa5c02754a24973d3c61e477f432
source Wiley Online Library Open Access; Publicly Available Content Database
subjects Accuracy
Algorithms
Circuits
Clustering
Clustering (Computers)
Community
Data mining
Mathematical analysis
Mathematical research
Poles
Robustness
Statistical analysis
Statistical methods
Strategy
Studies
Voltage
title An Enhanced Wu-Huberman Algorithm with Pole Point Selection Strategy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A47%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Enhanced%20Wu-Huberman%20Algorithm%20with%20Pole%20Point%20Selection%20Strategy&rft.jtitle=Abstract%20and%20Applied%20Analysis&rft.au=Sun,%20Yan&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=405&rft.epage=410-743&rft.pages=405-410-743&rft.issn=1085-3375&rft.eissn=1687-0409&rft_id=info:doi/10.1155/2013/589386&rft_dat=%3Cgale_doaj_%3EA369794520%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a581t-9f391fdde5ab7c0a7960761cb7c1bc1c8c277b36077fb3547e04ed35bb5c2a243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1428012270&rft_id=info:pmid/&rft_galeid=A369794520&rft_airiti_id=P20160825001_201312_201609070065_201609070065_405_410_743&rfr_iscdi=true