Loading…
Enhanced Anti-Atherosclerotic Efficacy of pH-Responsively Releasable Ganglioside GM3 Delivered by Reconstituted High-Density Lipoprotein
Recently, the atheroprotective role of endogenous GM3 and an atherogenesis-inhibiting effect of exogenous GM3 suggested a possibility of exogenous GM3 being recruited as an anti-atherosclerotic drug. This study seeks to endow exogenous GM3 with atherosclerotic targetability via reconstituted high-de...
Saved in:
Published in: | International journal of molecular sciences 2021-12, Vol.22 (24), p.13624 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recently, the atheroprotective role of endogenous GM3 and an atherogenesis-inhibiting effect of exogenous GM3 suggested a possibility of exogenous GM3 being recruited as an anti-atherosclerotic drug. This study seeks to endow exogenous GM3 with atherosclerotic targetability via reconstituted high-density lipoprotein (rHDL), an atherosclerotic targeting drug nanocarrier. Unloaded rHDL, rHDL loaded with exogenous GM3 at a low concentration (GM3
-rHDL), and rHDL carrying GM3 at a relatively high concentration (GM3
-rHDL) were prepared and characterized. The inhibitory effect of GM3-rHDL on lipid deposition in macrophages was confirmed, and GM3-rHDL did not affect the survival of red blood cells. In vivo experiments using ApoE
mice fed a high fat diet further confirmed the anti-atherosclerotic efficacy of exogenous GM3 and demonstrated that GM3 packed in HDL nanoparticles (GM3-rHDL) has an enhanced anti-atherosclerotic efficacy and a reduced effective dose of GM3. Then, the macrophage- and atherosclerotic plaque-targeting abilities of GM3-rHD, most likely via the interaction of ApoA-I on GM3-rHDL with its receptors (e.g., SR-B1) on cells, were certified via a microsphere-based method and an aortic fragment-based method, respectively. Moreover, we found that solution acidification enhanced GM3 release from GM3-rHDL nanoparticles, implying the pH-responsive GM3 release when GM3-rHDL enters the acidic atherosclerotic plaques from the neutral blood. The rHDL-mediated atherosclerotic targetability and pH-responsive GM3 release of GM3-rHDL enhanced the anti-atherosclerotic efficacy of exogenous GM3. The development of the GM3-rHDL nanoparticle may help with the application of exogenous GM3 as a clinical drug. Moreover, the data imply that the GM3-rHDL nanoparticle has the potential of being recruited as a drug nanocarrier with atherosclerotic targetability and enhanced anti-atherosclerotic efficacy. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms222413624 |