Loading…

Surface Passivation and Energetic Modification Suppress Nonradiative Recombination in Perovskite Solar Cells

Highlights The partial substitution of Br− on I-sites, and the restricted motion of MA + cations in correlation with suppressed electron-phonon coupling promote charge transport. The perovskite parent lattice of 2FEABr-treated perovskites was firmed, and the difficulty degree for A-site MA + cations...

Full description

Saved in:
Bibliographic Details
Published in:Nano-micro letters 2022-12, Vol.14 (1), p.108-108, Article 108
Main Authors: Dong, Wei, Qiao, Wencheng, Xiong, Shaobing, Yang, Jianming, Wang, Xuelu, Ding, Liming, Yao, Yefeng, Bao, Qinye
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c579t-cf46f79b504919c8f92ea56f50d65f4caaf58edfc7b5f50d14aed4d98756529b3
cites cdi_FETCH-LOGICAL-c579t-cf46f79b504919c8f92ea56f50d65f4caaf58edfc7b5f50d14aed4d98756529b3
container_end_page 108
container_issue 1
container_start_page 108
container_title Nano-micro letters
container_volume 14
creator Dong, Wei
Qiao, Wencheng
Xiong, Shaobing
Yang, Jianming
Wang, Xuelu
Ding, Liming
Yao, Yefeng
Bao, Qinye
description Highlights The partial substitution of Br− on I-sites, and the restricted motion of MA + cations in correlation with suppressed electron-phonon coupling promote charge transport. The perovskite parent lattice of 2FEABr-treated perovskites was firmed, and the difficulty degree for A-site MA + cations running out of the inorganic framework was thus enhanced. The efficiency was enhanced from 19.44% to 21.06%, accompanied with excellent stability. Surface passivation via post-treatment is an important strategy for improving power conversion efficiency and operational stability of perovskite solar cells. However, so far the interaction mechanisms between passivating additive and perovskite are not well understood. Here, we report the atomic-scale interaction of surface passivating additive 2,2-difluoroethylammonium bromine (2FEABr) on the MAPbI 3 . It is found that the bulky 2FEA + cations tend to distribute at film surface, while the Br − anions diffuse from surface into bulk. A combination of 19 F, 207 Pb, and 2 H solid-state NMR further reveal the Br − anions’ partial substitution for the I − sites, the restricted motion of partial MA + cations, and the firmed perovskite lattices, which would improve charge transport and stability of the perovskite films. Optical spectroscopy and ultraviolet photoelectron spectroscopy demonstrate that the 2FEABr induced surface passivation and energetic modification suppress the nonradiative recombination loss. These findings enable the efficiency of the p - i - n structured PSC significantly increasing from 19.44 to 21.06%, accompanied by excellent stability. Our work further establishes more knowledge link between passivating additive and PSC performance.
doi_str_mv 10.1007/s40820-022-00854-0
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_62085a189a5149b2ac15eaa3d8974fa6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_62085a189a5149b2ac15eaa3d8974fa6</doaj_id><sourcerecordid>2656122155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c579t-cf46f79b504919c8f92ea56f50d65f4caaf58edfc7b5f50d14aed4d98756529b3</originalsourceid><addsrcrecordid>eNp9ksFu1DAQhiMEolXpC3BAkbhwSbEdTxJfkNCq0EoFKhbO1sQZLy5Ze7GTlXh7vE0plAMnWzPf_J4Z_0XxnLMzzlj7OknWCVYxISrGOpAVe1QcCw6sAgD-ON9rzqumZc1RcZqS6xkI2YoW5NPiqAYpuejYcTGu52jRUHmNGdrj5IIv0Q_luae4ocmZ8kMYnHVmSa3n3S5SSuXH4CMOLkf3VH4mE7a98wvjfHlNMezTdzdRuQ4jxnJF45ieFU8sjolO786T4uu78y-ri-rq0_vL1durykCrpspY2dhW9cCk4sp0VglCaCywoQErDaKFjgZr2h4OQS6RBjmoroUGhOrrk-Jy0R0C3uhddFuMP3VAp28DIW40xjzaSLoReXnIO4XApeoFGg6EWA-daqXFJmu9WbR2c7-lwZCfIo4PRB9mvPumN2GvFcuqtcgCr-4EYvgxU5r01iWT14Gewpy0yD13DdTygL78B70Jc_R5VQeq4SL_L2RKLJSJIaVI9r4ZzvTBG3rxhs7e0Lfe0CwXvfh7jPuS307IQL0AKaf8huKft_8j-wtXYsZi</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2656122155</pqid></control><display><type>article</type><title>Surface Passivation and Energetic Modification Suppress Nonradiative Recombination in Perovskite Solar Cells</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><source>PubMed Central</source><creator>Dong, Wei ; Qiao, Wencheng ; Xiong, Shaobing ; Yang, Jianming ; Wang, Xuelu ; Ding, Liming ; Yao, Yefeng ; Bao, Qinye</creator><creatorcontrib>Dong, Wei ; Qiao, Wencheng ; Xiong, Shaobing ; Yang, Jianming ; Wang, Xuelu ; Ding, Liming ; Yao, Yefeng ; Bao, Qinye</creatorcontrib><description>Highlights The partial substitution of Br− on I-sites, and the restricted motion of MA + cations in correlation with suppressed electron-phonon coupling promote charge transport. The perovskite parent lattice of 2FEABr-treated perovskites was firmed, and the difficulty degree for A-site MA + cations running out of the inorganic framework was thus enhanced. The efficiency was enhanced from 19.44% to 21.06%, accompanied with excellent stability. Surface passivation via post-treatment is an important strategy for improving power conversion efficiency and operational stability of perovskite solar cells. However, so far the interaction mechanisms between passivating additive and perovskite are not well understood. Here, we report the atomic-scale interaction of surface passivating additive 2,2-difluoroethylammonium bromine (2FEABr) on the MAPbI 3 . It is found that the bulky 2FEA + cations tend to distribute at film surface, while the Br − anions diffuse from surface into bulk. A combination of 19 F, 207 Pb, and 2 H solid-state NMR further reveal the Br − anions’ partial substitution for the I − sites, the restricted motion of partial MA + cations, and the firmed perovskite lattices, which would improve charge transport and stability of the perovskite films. Optical spectroscopy and ultraviolet photoelectron spectroscopy demonstrate that the 2FEABr induced surface passivation and energetic modification suppress the nonradiative recombination loss. These findings enable the efficiency of the p - i - n structured PSC significantly increasing from 19.44 to 21.06%, accompanied by excellent stability. Our work further establishes more knowledge link between passivating additive and PSC performance.</description><identifier>ISSN: 2311-6706</identifier><identifier>EISSN: 2150-5551</identifier><identifier>DOI: 10.1007/s40820-022-00854-0</identifier><identifier>PMID: 35441280</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Anions ; Bromine ; Cations ; Charge transport ; Efficiency ; Energy conversion efficiency ; Engineering ; Lattices ; Lead isotopes ; Nanoscale Science and Technology ; Nanotechnology ; Nanotechnology and Microengineering ; NMR ; Nuclear magnetic resonance ; Passivation ; Passivity ; Perovskite solar cell ; Perovskite Solar Cells ; Perovskites ; Photoelectrons ; Photovoltaic cells ; Solar cells ; Solid-state NMR ; Spectrum analysis ; Substitutes ; Surface stability</subject><ispartof>Nano-micro letters, 2022-12, Vol.14 (1), p.108-108, Article 108</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c579t-cf46f79b504919c8f92ea56f50d65f4caaf58edfc7b5f50d14aed4d98756529b3</citedby><cites>FETCH-LOGICAL-c579t-cf46f79b504919c8f92ea56f50d65f4caaf58edfc7b5f50d14aed4d98756529b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9018932/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2656122155?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35441280$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Wei</creatorcontrib><creatorcontrib>Qiao, Wencheng</creatorcontrib><creatorcontrib>Xiong, Shaobing</creatorcontrib><creatorcontrib>Yang, Jianming</creatorcontrib><creatorcontrib>Wang, Xuelu</creatorcontrib><creatorcontrib>Ding, Liming</creatorcontrib><creatorcontrib>Yao, Yefeng</creatorcontrib><creatorcontrib>Bao, Qinye</creatorcontrib><title>Surface Passivation and Energetic Modification Suppress Nonradiative Recombination in Perovskite Solar Cells</title><title>Nano-micro letters</title><addtitle>Nano-Micro Lett</addtitle><addtitle>Nanomicro Lett</addtitle><description>Highlights The partial substitution of Br− on I-sites, and the restricted motion of MA + cations in correlation with suppressed electron-phonon coupling promote charge transport. The perovskite parent lattice of 2FEABr-treated perovskites was firmed, and the difficulty degree for A-site MA + cations running out of the inorganic framework was thus enhanced. The efficiency was enhanced from 19.44% to 21.06%, accompanied with excellent stability. Surface passivation via post-treatment is an important strategy for improving power conversion efficiency and operational stability of perovskite solar cells. However, so far the interaction mechanisms between passivating additive and perovskite are not well understood. Here, we report the atomic-scale interaction of surface passivating additive 2,2-difluoroethylammonium bromine (2FEABr) on the MAPbI 3 . It is found that the bulky 2FEA + cations tend to distribute at film surface, while the Br − anions diffuse from surface into bulk. A combination of 19 F, 207 Pb, and 2 H solid-state NMR further reveal the Br − anions’ partial substitution for the I − sites, the restricted motion of partial MA + cations, and the firmed perovskite lattices, which would improve charge transport and stability of the perovskite films. Optical spectroscopy and ultraviolet photoelectron spectroscopy demonstrate that the 2FEABr induced surface passivation and energetic modification suppress the nonradiative recombination loss. These findings enable the efficiency of the p - i - n structured PSC significantly increasing from 19.44 to 21.06%, accompanied by excellent stability. Our work further establishes more knowledge link between passivating additive and PSC performance.</description><subject>Anions</subject><subject>Bromine</subject><subject>Cations</subject><subject>Charge transport</subject><subject>Efficiency</subject><subject>Energy conversion efficiency</subject><subject>Engineering</subject><subject>Lattices</subject><subject>Lead isotopes</subject><subject>Nanoscale Science and Technology</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Passivation</subject><subject>Passivity</subject><subject>Perovskite solar cell</subject><subject>Perovskite Solar Cells</subject><subject>Perovskites</subject><subject>Photoelectrons</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Solid-state NMR</subject><subject>Spectrum analysis</subject><subject>Substitutes</subject><subject>Surface stability</subject><issn>2311-6706</issn><issn>2150-5551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ksFu1DAQhiMEolXpC3BAkbhwSbEdTxJfkNCq0EoFKhbO1sQZLy5Ze7GTlXh7vE0plAMnWzPf_J4Z_0XxnLMzzlj7OknWCVYxISrGOpAVe1QcCw6sAgD-ON9rzqumZc1RcZqS6xkI2YoW5NPiqAYpuejYcTGu52jRUHmNGdrj5IIv0Q_luae4ocmZ8kMYnHVmSa3n3S5SSuXH4CMOLkf3VH4mE7a98wvjfHlNMezTdzdRuQ4jxnJF45ieFU8sjolO786T4uu78y-ri-rq0_vL1durykCrpspY2dhW9cCk4sp0VglCaCywoQErDaKFjgZr2h4OQS6RBjmoroUGhOrrk-Jy0R0C3uhddFuMP3VAp28DIW40xjzaSLoReXnIO4XApeoFGg6EWA-daqXFJmu9WbR2c7-lwZCfIo4PRB9mvPumN2GvFcuqtcgCr-4EYvgxU5r01iWT14Gewpy0yD13DdTygL78B70Jc_R5VQeq4SL_L2RKLJSJIaVI9r4ZzvTBG3rxhs7e0Lfe0CwXvfh7jPuS307IQL0AKaf8huKft_8j-wtXYsZi</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Dong, Wei</creator><creator>Qiao, Wencheng</creator><creator>Xiong, Shaobing</creator><creator>Yang, Jianming</creator><creator>Wang, Xuelu</creator><creator>Ding, Liming</creator><creator>Yao, Yefeng</creator><creator>Bao, Qinye</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20221201</creationdate><title>Surface Passivation and Energetic Modification Suppress Nonradiative Recombination in Perovskite Solar Cells</title><author>Dong, Wei ; Qiao, Wencheng ; Xiong, Shaobing ; Yang, Jianming ; Wang, Xuelu ; Ding, Liming ; Yao, Yefeng ; Bao, Qinye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c579t-cf46f79b504919c8f92ea56f50d65f4caaf58edfc7b5f50d14aed4d98756529b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anions</topic><topic>Bromine</topic><topic>Cations</topic><topic>Charge transport</topic><topic>Efficiency</topic><topic>Energy conversion efficiency</topic><topic>Engineering</topic><topic>Lattices</topic><topic>Lead isotopes</topic><topic>Nanoscale Science and Technology</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Passivation</topic><topic>Passivity</topic><topic>Perovskite solar cell</topic><topic>Perovskite Solar Cells</topic><topic>Perovskites</topic><topic>Photoelectrons</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Solid-state NMR</topic><topic>Spectrum analysis</topic><topic>Substitutes</topic><topic>Surface stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Wei</creatorcontrib><creatorcontrib>Qiao, Wencheng</creatorcontrib><creatorcontrib>Xiong, Shaobing</creatorcontrib><creatorcontrib>Yang, Jianming</creatorcontrib><creatorcontrib>Wang, Xuelu</creatorcontrib><creatorcontrib>Ding, Liming</creatorcontrib><creatorcontrib>Yao, Yefeng</creatorcontrib><creatorcontrib>Bao, Qinye</creatorcontrib><collection>Springer_OA刊</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nano-micro letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Wei</au><au>Qiao, Wencheng</au><au>Xiong, Shaobing</au><au>Yang, Jianming</au><au>Wang, Xuelu</au><au>Ding, Liming</au><au>Yao, Yefeng</au><au>Bao, Qinye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Passivation and Energetic Modification Suppress Nonradiative Recombination in Perovskite Solar Cells</atitle><jtitle>Nano-micro letters</jtitle><stitle>Nano-Micro Lett</stitle><addtitle>Nanomicro Lett</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>14</volume><issue>1</issue><spage>108</spage><epage>108</epage><pages>108-108</pages><artnum>108</artnum><issn>2311-6706</issn><eissn>2150-5551</eissn><abstract>Highlights The partial substitution of Br− on I-sites, and the restricted motion of MA + cations in correlation with suppressed electron-phonon coupling promote charge transport. The perovskite parent lattice of 2FEABr-treated perovskites was firmed, and the difficulty degree for A-site MA + cations running out of the inorganic framework was thus enhanced. The efficiency was enhanced from 19.44% to 21.06%, accompanied with excellent stability. Surface passivation via post-treatment is an important strategy for improving power conversion efficiency and operational stability of perovskite solar cells. However, so far the interaction mechanisms between passivating additive and perovskite are not well understood. Here, we report the atomic-scale interaction of surface passivating additive 2,2-difluoroethylammonium bromine (2FEABr) on the MAPbI 3 . It is found that the bulky 2FEA + cations tend to distribute at film surface, while the Br − anions diffuse from surface into bulk. A combination of 19 F, 207 Pb, and 2 H solid-state NMR further reveal the Br − anions’ partial substitution for the I − sites, the restricted motion of partial MA + cations, and the firmed perovskite lattices, which would improve charge transport and stability of the perovskite films. Optical spectroscopy and ultraviolet photoelectron spectroscopy demonstrate that the 2FEABr induced surface passivation and energetic modification suppress the nonradiative recombination loss. These findings enable the efficiency of the p - i - n structured PSC significantly increasing from 19.44 to 21.06%, accompanied by excellent stability. Our work further establishes more knowledge link between passivating additive and PSC performance.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><pmid>35441280</pmid><doi>10.1007/s40820-022-00854-0</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2311-6706
ispartof Nano-micro letters, 2022-12, Vol.14 (1), p.108-108, Article 108
issn 2311-6706
2150-5551
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_62085a189a5149b2ac15eaa3d8974fa6
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access; PubMed Central
subjects Anions
Bromine
Cations
Charge transport
Efficiency
Energy conversion efficiency
Engineering
Lattices
Lead isotopes
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
NMR
Nuclear magnetic resonance
Passivation
Passivity
Perovskite solar cell
Perovskite Solar Cells
Perovskites
Photoelectrons
Photovoltaic cells
Solar cells
Solid-state NMR
Spectrum analysis
Substitutes
Surface stability
title Surface Passivation and Energetic Modification Suppress Nonradiative Recombination in Perovskite Solar Cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A02%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Passivation%20and%20Energetic%20Modification%20Suppress%20Nonradiative%20Recombination%20in%20Perovskite%20Solar%20Cells&rft.jtitle=Nano-micro%20letters&rft.au=Dong,%20Wei&rft.date=2022-12-01&rft.volume=14&rft.issue=1&rft.spage=108&rft.epage=108&rft.pages=108-108&rft.artnum=108&rft.issn=2311-6706&rft.eissn=2150-5551&rft_id=info:doi/10.1007/s40820-022-00854-0&rft_dat=%3Cproquest_doaj_%3E2656122155%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c579t-cf46f79b504919c8f92ea56f50d65f4caaf58edfc7b5f50d14aed4d98756529b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2656122155&rft_id=info:pmid/35441280&rfr_iscdi=true