Loading…
Surface Passivation and Energetic Modification Suppress Nonradiative Recombination in Perovskite Solar Cells
Highlights The partial substitution of Br− on I-sites, and the restricted motion of MA + cations in correlation with suppressed electron-phonon coupling promote charge transport. The perovskite parent lattice of 2FEABr-treated perovskites was firmed, and the difficulty degree for A-site MA + cations...
Saved in:
Published in: | Nano-micro letters 2022-12, Vol.14 (1), p.108-108, Article 108 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c579t-cf46f79b504919c8f92ea56f50d65f4caaf58edfc7b5f50d14aed4d98756529b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c579t-cf46f79b504919c8f92ea56f50d65f4caaf58edfc7b5f50d14aed4d98756529b3 |
container_end_page | 108 |
container_issue | 1 |
container_start_page | 108 |
container_title | Nano-micro letters |
container_volume | 14 |
creator | Dong, Wei Qiao, Wencheng Xiong, Shaobing Yang, Jianming Wang, Xuelu Ding, Liming Yao, Yefeng Bao, Qinye |
description | Highlights
The partial substitution of Br− on I-sites, and the restricted motion of MA
+
cations in correlation with suppressed electron-phonon coupling promote charge transport.
The perovskite parent lattice of 2FEABr-treated perovskites was firmed, and the difficulty degree for A-site MA
+
cations running out of the inorganic framework was thus enhanced.
The efficiency was enhanced from 19.44% to 21.06%, accompanied with excellent stability.
Surface passivation via post-treatment is an important strategy for improving power conversion efficiency and operational stability of perovskite solar cells. However, so far the interaction mechanisms between passivating additive and perovskite are not well understood. Here, we report the atomic-scale interaction of surface passivating additive 2,2-difluoroethylammonium bromine (2FEABr) on the MAPbI
3
. It is found that the bulky 2FEA
+
cations tend to distribute at film surface, while the Br
−
anions diffuse from surface into bulk. A combination of
19
F,
207
Pb, and
2
H solid-state NMR further reveal the Br
−
anions’ partial substitution for the I
−
sites, the restricted motion of partial MA
+
cations, and the firmed perovskite lattices, which would improve charge transport and stability of the perovskite films. Optical spectroscopy and ultraviolet photoelectron spectroscopy demonstrate that the 2FEABr induced surface passivation and energetic modification suppress the nonradiative recombination loss. These findings enable the efficiency of the
p
-
i
-
n
structured PSC significantly increasing from 19.44 to 21.06%, accompanied by excellent stability. Our work further establishes more knowledge link between passivating additive and PSC performance. |
doi_str_mv | 10.1007/s40820-022-00854-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_62085a189a5149b2ac15eaa3d8974fa6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_62085a189a5149b2ac15eaa3d8974fa6</doaj_id><sourcerecordid>2656122155</sourcerecordid><originalsourceid>FETCH-LOGICAL-c579t-cf46f79b504919c8f92ea56f50d65f4caaf58edfc7b5f50d14aed4d98756529b3</originalsourceid><addsrcrecordid>eNp9ksFu1DAQhiMEolXpC3BAkbhwSbEdTxJfkNCq0EoFKhbO1sQZLy5Ze7GTlXh7vE0plAMnWzPf_J4Z_0XxnLMzzlj7OknWCVYxISrGOpAVe1QcCw6sAgD-ON9rzqumZc1RcZqS6xkI2YoW5NPiqAYpuejYcTGu52jRUHmNGdrj5IIv0Q_luae4ocmZ8kMYnHVmSa3n3S5SSuXH4CMOLkf3VH4mE7a98wvjfHlNMezTdzdRuQ4jxnJF45ieFU8sjolO786T4uu78y-ri-rq0_vL1durykCrpspY2dhW9cCk4sp0VglCaCywoQErDaKFjgZr2h4OQS6RBjmoroUGhOrrk-Jy0R0C3uhddFuMP3VAp28DIW40xjzaSLoReXnIO4XApeoFGg6EWA-daqXFJmu9WbR2c7-lwZCfIo4PRB9mvPumN2GvFcuqtcgCr-4EYvgxU5r01iWT14Gewpy0yD13DdTygL78B70Jc_R5VQeq4SL_L2RKLJSJIaVI9r4ZzvTBG3rxhs7e0Lfe0CwXvfh7jPuS307IQL0AKaf8huKft_8j-wtXYsZi</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2656122155</pqid></control><display><type>article</type><title>Surface Passivation and Energetic Modification Suppress Nonradiative Recombination in Perovskite Solar Cells</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><source>PubMed Central</source><creator>Dong, Wei ; Qiao, Wencheng ; Xiong, Shaobing ; Yang, Jianming ; Wang, Xuelu ; Ding, Liming ; Yao, Yefeng ; Bao, Qinye</creator><creatorcontrib>Dong, Wei ; Qiao, Wencheng ; Xiong, Shaobing ; Yang, Jianming ; Wang, Xuelu ; Ding, Liming ; Yao, Yefeng ; Bao, Qinye</creatorcontrib><description>Highlights
The partial substitution of Br− on I-sites, and the restricted motion of MA
+
cations in correlation with suppressed electron-phonon coupling promote charge transport.
The perovskite parent lattice of 2FEABr-treated perovskites was firmed, and the difficulty degree for A-site MA
+
cations running out of the inorganic framework was thus enhanced.
The efficiency was enhanced from 19.44% to 21.06%, accompanied with excellent stability.
Surface passivation via post-treatment is an important strategy for improving power conversion efficiency and operational stability of perovskite solar cells. However, so far the interaction mechanisms between passivating additive and perovskite are not well understood. Here, we report the atomic-scale interaction of surface passivating additive 2,2-difluoroethylammonium bromine (2FEABr) on the MAPbI
3
. It is found that the bulky 2FEA
+
cations tend to distribute at film surface, while the Br
−
anions diffuse from surface into bulk. A combination of
19
F,
207
Pb, and
2
H solid-state NMR further reveal the Br
−
anions’ partial substitution for the I
−
sites, the restricted motion of partial MA
+
cations, and the firmed perovskite lattices, which would improve charge transport and stability of the perovskite films. Optical spectroscopy and ultraviolet photoelectron spectroscopy demonstrate that the 2FEABr induced surface passivation and energetic modification suppress the nonradiative recombination loss. These findings enable the efficiency of the
p
-
i
-
n
structured PSC significantly increasing from 19.44 to 21.06%, accompanied by excellent stability. Our work further establishes more knowledge link between passivating additive and PSC performance.</description><identifier>ISSN: 2311-6706</identifier><identifier>EISSN: 2150-5551</identifier><identifier>DOI: 10.1007/s40820-022-00854-0</identifier><identifier>PMID: 35441280</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Anions ; Bromine ; Cations ; Charge transport ; Efficiency ; Energy conversion efficiency ; Engineering ; Lattices ; Lead isotopes ; Nanoscale Science and Technology ; Nanotechnology ; Nanotechnology and Microengineering ; NMR ; Nuclear magnetic resonance ; Passivation ; Passivity ; Perovskite solar cell ; Perovskite Solar Cells ; Perovskites ; Photoelectrons ; Photovoltaic cells ; Solar cells ; Solid-state NMR ; Spectrum analysis ; Substitutes ; Surface stability</subject><ispartof>Nano-micro letters, 2022-12, Vol.14 (1), p.108-108, Article 108</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c579t-cf46f79b504919c8f92ea56f50d65f4caaf58edfc7b5f50d14aed4d98756529b3</citedby><cites>FETCH-LOGICAL-c579t-cf46f79b504919c8f92ea56f50d65f4caaf58edfc7b5f50d14aed4d98756529b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9018932/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2656122155?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35441280$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Wei</creatorcontrib><creatorcontrib>Qiao, Wencheng</creatorcontrib><creatorcontrib>Xiong, Shaobing</creatorcontrib><creatorcontrib>Yang, Jianming</creatorcontrib><creatorcontrib>Wang, Xuelu</creatorcontrib><creatorcontrib>Ding, Liming</creatorcontrib><creatorcontrib>Yao, Yefeng</creatorcontrib><creatorcontrib>Bao, Qinye</creatorcontrib><title>Surface Passivation and Energetic Modification Suppress Nonradiative Recombination in Perovskite Solar Cells</title><title>Nano-micro letters</title><addtitle>Nano-Micro Lett</addtitle><addtitle>Nanomicro Lett</addtitle><description>Highlights
The partial substitution of Br− on I-sites, and the restricted motion of MA
+
cations in correlation with suppressed electron-phonon coupling promote charge transport.
The perovskite parent lattice of 2FEABr-treated perovskites was firmed, and the difficulty degree for A-site MA
+
cations running out of the inorganic framework was thus enhanced.
The efficiency was enhanced from 19.44% to 21.06%, accompanied with excellent stability.
Surface passivation via post-treatment is an important strategy for improving power conversion efficiency and operational stability of perovskite solar cells. However, so far the interaction mechanisms between passivating additive and perovskite are not well understood. Here, we report the atomic-scale interaction of surface passivating additive 2,2-difluoroethylammonium bromine (2FEABr) on the MAPbI
3
. It is found that the bulky 2FEA
+
cations tend to distribute at film surface, while the Br
−
anions diffuse from surface into bulk. A combination of
19
F,
207
Pb, and
2
H solid-state NMR further reveal the Br
−
anions’ partial substitution for the I
−
sites, the restricted motion of partial MA
+
cations, and the firmed perovskite lattices, which would improve charge transport and stability of the perovskite films. Optical spectroscopy and ultraviolet photoelectron spectroscopy demonstrate that the 2FEABr induced surface passivation and energetic modification suppress the nonradiative recombination loss. These findings enable the efficiency of the
p
-
i
-
n
structured PSC significantly increasing from 19.44 to 21.06%, accompanied by excellent stability. Our work further establishes more knowledge link between passivating additive and PSC performance.</description><subject>Anions</subject><subject>Bromine</subject><subject>Cations</subject><subject>Charge transport</subject><subject>Efficiency</subject><subject>Energy conversion efficiency</subject><subject>Engineering</subject><subject>Lattices</subject><subject>Lead isotopes</subject><subject>Nanoscale Science and Technology</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Passivation</subject><subject>Passivity</subject><subject>Perovskite solar cell</subject><subject>Perovskite Solar Cells</subject><subject>Perovskites</subject><subject>Photoelectrons</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Solid-state NMR</subject><subject>Spectrum analysis</subject><subject>Substitutes</subject><subject>Surface stability</subject><issn>2311-6706</issn><issn>2150-5551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ksFu1DAQhiMEolXpC3BAkbhwSbEdTxJfkNCq0EoFKhbO1sQZLy5Ze7GTlXh7vE0plAMnWzPf_J4Z_0XxnLMzzlj7OknWCVYxISrGOpAVe1QcCw6sAgD-ON9rzqumZc1RcZqS6xkI2YoW5NPiqAYpuejYcTGu52jRUHmNGdrj5IIv0Q_luae4ocmZ8kMYnHVmSa3n3S5SSuXH4CMOLkf3VH4mE7a98wvjfHlNMezTdzdRuQ4jxnJF45ieFU8sjolO786T4uu78y-ri-rq0_vL1durykCrpspY2dhW9cCk4sp0VglCaCywoQErDaKFjgZr2h4OQS6RBjmoroUGhOrrk-Jy0R0C3uhddFuMP3VAp28DIW40xjzaSLoReXnIO4XApeoFGg6EWA-daqXFJmu9WbR2c7-lwZCfIo4PRB9mvPumN2GvFcuqtcgCr-4EYvgxU5r01iWT14Gewpy0yD13DdTygL78B70Jc_R5VQeq4SL_L2RKLJSJIaVI9r4ZzvTBG3rxhs7e0Lfe0CwXvfh7jPuS307IQL0AKaf8huKft_8j-wtXYsZi</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Dong, Wei</creator><creator>Qiao, Wencheng</creator><creator>Xiong, Shaobing</creator><creator>Yang, Jianming</creator><creator>Wang, Xuelu</creator><creator>Ding, Liming</creator><creator>Yao, Yefeng</creator><creator>Bao, Qinye</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20221201</creationdate><title>Surface Passivation and Energetic Modification Suppress Nonradiative Recombination in Perovskite Solar Cells</title><author>Dong, Wei ; Qiao, Wencheng ; Xiong, Shaobing ; Yang, Jianming ; Wang, Xuelu ; Ding, Liming ; Yao, Yefeng ; Bao, Qinye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c579t-cf46f79b504919c8f92ea56f50d65f4caaf58edfc7b5f50d14aed4d98756529b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anions</topic><topic>Bromine</topic><topic>Cations</topic><topic>Charge transport</topic><topic>Efficiency</topic><topic>Energy conversion efficiency</topic><topic>Engineering</topic><topic>Lattices</topic><topic>Lead isotopes</topic><topic>Nanoscale Science and Technology</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Passivation</topic><topic>Passivity</topic><topic>Perovskite solar cell</topic><topic>Perovskite Solar Cells</topic><topic>Perovskites</topic><topic>Photoelectrons</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Solid-state NMR</topic><topic>Spectrum analysis</topic><topic>Substitutes</topic><topic>Surface stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Wei</creatorcontrib><creatorcontrib>Qiao, Wencheng</creatorcontrib><creatorcontrib>Xiong, Shaobing</creatorcontrib><creatorcontrib>Yang, Jianming</creatorcontrib><creatorcontrib>Wang, Xuelu</creatorcontrib><creatorcontrib>Ding, Liming</creatorcontrib><creatorcontrib>Yao, Yefeng</creatorcontrib><creatorcontrib>Bao, Qinye</creatorcontrib><collection>Springer_OA刊</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nano-micro letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Wei</au><au>Qiao, Wencheng</au><au>Xiong, Shaobing</au><au>Yang, Jianming</au><au>Wang, Xuelu</au><au>Ding, Liming</au><au>Yao, Yefeng</au><au>Bao, Qinye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Passivation and Energetic Modification Suppress Nonradiative Recombination in Perovskite Solar Cells</atitle><jtitle>Nano-micro letters</jtitle><stitle>Nano-Micro Lett</stitle><addtitle>Nanomicro Lett</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>14</volume><issue>1</issue><spage>108</spage><epage>108</epage><pages>108-108</pages><artnum>108</artnum><issn>2311-6706</issn><eissn>2150-5551</eissn><abstract>Highlights
The partial substitution of Br− on I-sites, and the restricted motion of MA
+
cations in correlation with suppressed electron-phonon coupling promote charge transport.
The perovskite parent lattice of 2FEABr-treated perovskites was firmed, and the difficulty degree for A-site MA
+
cations running out of the inorganic framework was thus enhanced.
The efficiency was enhanced from 19.44% to 21.06%, accompanied with excellent stability.
Surface passivation via post-treatment is an important strategy for improving power conversion efficiency and operational stability of perovskite solar cells. However, so far the interaction mechanisms between passivating additive and perovskite are not well understood. Here, we report the atomic-scale interaction of surface passivating additive 2,2-difluoroethylammonium bromine (2FEABr) on the MAPbI
3
. It is found that the bulky 2FEA
+
cations tend to distribute at film surface, while the Br
−
anions diffuse from surface into bulk. A combination of
19
F,
207
Pb, and
2
H solid-state NMR further reveal the Br
−
anions’ partial substitution for the I
−
sites, the restricted motion of partial MA
+
cations, and the firmed perovskite lattices, which would improve charge transport and stability of the perovskite films. Optical spectroscopy and ultraviolet photoelectron spectroscopy demonstrate that the 2FEABr induced surface passivation and energetic modification suppress the nonradiative recombination loss. These findings enable the efficiency of the
p
-
i
-
n
structured PSC significantly increasing from 19.44 to 21.06%, accompanied by excellent stability. Our work further establishes more knowledge link between passivating additive and PSC performance.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><pmid>35441280</pmid><doi>10.1007/s40820-022-00854-0</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2311-6706 |
ispartof | Nano-micro letters, 2022-12, Vol.14 (1), p.108-108, Article 108 |
issn | 2311-6706 2150-5551 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_62085a189a5149b2ac15eaa3d8974fa6 |
source | Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access; PubMed Central |
subjects | Anions Bromine Cations Charge transport Efficiency Energy conversion efficiency Engineering Lattices Lead isotopes Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering NMR Nuclear magnetic resonance Passivation Passivity Perovskite solar cell Perovskite Solar Cells Perovskites Photoelectrons Photovoltaic cells Solar cells Solid-state NMR Spectrum analysis Substitutes Surface stability |
title | Surface Passivation and Energetic Modification Suppress Nonradiative Recombination in Perovskite Solar Cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A02%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Passivation%20and%20Energetic%20Modification%20Suppress%20Nonradiative%20Recombination%20in%20Perovskite%20Solar%20Cells&rft.jtitle=Nano-micro%20letters&rft.au=Dong,%20Wei&rft.date=2022-12-01&rft.volume=14&rft.issue=1&rft.spage=108&rft.epage=108&rft.pages=108-108&rft.artnum=108&rft.issn=2311-6706&rft.eissn=2150-5551&rft_id=info:doi/10.1007/s40820-022-00854-0&rft_dat=%3Cproquest_doaj_%3E2656122155%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c579t-cf46f79b504919c8f92ea56f50d65f4caaf58edfc7b5f50d14aed4d98756529b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2656122155&rft_id=info:pmid/35441280&rfr_iscdi=true |