Loading…

A comprehence study of DDoS attack detecting algorithm using GRU-BWFA classifier

The suggested classifier, Gated Recurrent Unit Neural Network, is utilised to produce the appropriate classification in this research. It is based on Bidirectional weighted feature averaging (GRU-BWFA). The findings show that each classifier performs differently, with the accuracy rate ranging betwe...

Full description

Saved in:
Bibliographic Details
Published in:Measurement. Sensors 2022-12, Vol.24, p.100570, Article 100570
Main Authors: Gangula, Rekha, Mohan, V. Murali, Kumar, Ranjeeth
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c287t-ba8d832ed3c08e4ec84a2b72ece054c223bcdf64ad5a6c5f2f7921ca2542d8ea3
cites cdi_FETCH-LOGICAL-c287t-ba8d832ed3c08e4ec84a2b72ece054c223bcdf64ad5a6c5f2f7921ca2542d8ea3
container_end_page
container_issue
container_start_page 100570
container_title Measurement. Sensors
container_volume 24
creator Gangula, Rekha
Mohan, V. Murali
Kumar, Ranjeeth
description The suggested classifier, Gated Recurrent Unit Neural Network, is utilised to produce the appropriate classification in this research. It is based on Bidirectional weighted feature averaging (GRU-BWFA). The findings show that each classifier performs differently, with the accuracy rate ranging between the three. GRU-BWFA, the suggested system, has the greatest accuracy rate of 99.9%. The suggested approach outperformed current algorithms to categorise and identify several attacks from the SNMP-MIB dataset, including TCP-SYN, UDP flood, ICMP-echo, HTTP flood, Slow Loris, Slow Post, and Brute force, with a detection rate of 99.9%. As a result, the System is effectively restored in the shortest possible time.
doi_str_mv 10.1016/j.measen.2022.100570
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_62116dd7193a43978c2b192653b5dee3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2665917422002045</els_id><doaj_id>oai_doaj_org_article_62116dd7193a43978c2b192653b5dee3</doaj_id><sourcerecordid>S2665917422002045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-ba8d832ed3c08e4ec84a2b72ece054c223bcdf64ad5a6c5f2f7921ca2542d8ea3</originalsourceid><addsrcrecordid>eNp9kNtKw0AQhoMoWLRv4EVeIHV3sjndCLW1tVBQ1OLlMtmdtBvbpuymQt_ejRHxyqs5wP8x8wXBDWcjznh6W492hI72I2AAfsWSjJ0FA0jTJCp4Js7_9JfB0LmaMQa5z4IYBM_jUDW7g6UN7RWFrj3qU9hU4XTavIbYtqg-Qk0tqdbs1yFu14017WYXHl03z19W0f37zDO26JypDNnr4KLCraPhT70KVrOHt8ljtHyaLybjZaQgz9qoxFznMZCOFctJkMoFQpkBKWKJUABxqXSVCtQJpiqpoMoK4AohEaBzwvgqWPRc3WAtD9bs0J5kg0Z-Lxq7lmhbo7YkU-A81TrjRYwiLrJcQckLSJO4TDRR7FmiZynbOGep-uVxJjvJspa9ZNlJlr1kH7vrY-T__PS_S6dMp1Eb64X5Q8z_gC8Fi4ZP</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A comprehence study of DDoS attack detecting algorithm using GRU-BWFA classifier</title><source>Elsevier ScienceDirect Journals</source><creator>Gangula, Rekha ; Mohan, V. Murali ; Kumar, Ranjeeth</creator><creatorcontrib>Gangula, Rekha ; Mohan, V. Murali ; Kumar, Ranjeeth</creatorcontrib><description>The suggested classifier, Gated Recurrent Unit Neural Network, is utilised to produce the appropriate classification in this research. It is based on Bidirectional weighted feature averaging (GRU-BWFA). The findings show that each classifier performs differently, with the accuracy rate ranging between the three. GRU-BWFA, the suggested system, has the greatest accuracy rate of 99.9%. The suggested approach outperformed current algorithms to categorise and identify several attacks from the SNMP-MIB dataset, including TCP-SYN, UDP flood, ICMP-echo, HTTP flood, Slow Loris, Slow Post, and Brute force, with a detection rate of 99.9%. As a result, the System is effectively restored in the shortest possible time.</description><identifier>ISSN: 2665-9174</identifier><identifier>EISSN: 2665-9174</identifier><identifier>DOI: 10.1016/j.measen.2022.100570</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Attack ; Classification ; DDoS ; Deep learning ; GRU-BWFA ; Recurrent neural network</subject><ispartof>Measurement. Sensors, 2022-12, Vol.24, p.100570, Article 100570</ispartof><rights>2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-ba8d832ed3c08e4ec84a2b72ece054c223bcdf64ad5a6c5f2f7921ca2542d8ea3</citedby><cites>FETCH-LOGICAL-c287t-ba8d832ed3c08e4ec84a2b72ece054c223bcdf64ad5a6c5f2f7921ca2542d8ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2665917422002045$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3536,27905,27906,45761</link.rule.ids></links><search><creatorcontrib>Gangula, Rekha</creatorcontrib><creatorcontrib>Mohan, V. Murali</creatorcontrib><creatorcontrib>Kumar, Ranjeeth</creatorcontrib><title>A comprehence study of DDoS attack detecting algorithm using GRU-BWFA classifier</title><title>Measurement. Sensors</title><description>The suggested classifier, Gated Recurrent Unit Neural Network, is utilised to produce the appropriate classification in this research. It is based on Bidirectional weighted feature averaging (GRU-BWFA). The findings show that each classifier performs differently, with the accuracy rate ranging between the three. GRU-BWFA, the suggested system, has the greatest accuracy rate of 99.9%. The suggested approach outperformed current algorithms to categorise and identify several attacks from the SNMP-MIB dataset, including TCP-SYN, UDP flood, ICMP-echo, HTTP flood, Slow Loris, Slow Post, and Brute force, with a detection rate of 99.9%. As a result, the System is effectively restored in the shortest possible time.</description><subject>Attack</subject><subject>Classification</subject><subject>DDoS</subject><subject>Deep learning</subject><subject>GRU-BWFA</subject><subject>Recurrent neural network</subject><issn>2665-9174</issn><issn>2665-9174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kNtKw0AQhoMoWLRv4EVeIHV3sjndCLW1tVBQ1OLlMtmdtBvbpuymQt_ejRHxyqs5wP8x8wXBDWcjznh6W492hI72I2AAfsWSjJ0FA0jTJCp4Js7_9JfB0LmaMQa5z4IYBM_jUDW7g6UN7RWFrj3qU9hU4XTavIbYtqg-Qk0tqdbs1yFu14017WYXHl03z19W0f37zDO26JypDNnr4KLCraPhT70KVrOHt8ljtHyaLybjZaQgz9qoxFznMZCOFctJkMoFQpkBKWKJUABxqXSVCtQJpiqpoMoK4AohEaBzwvgqWPRc3WAtD9bs0J5kg0Z-Lxq7lmhbo7YkU-A81TrjRYwiLrJcQckLSJO4TDRR7FmiZynbOGep-uVxJjvJspa9ZNlJlr1kH7vrY-T__PS_S6dMp1Eb64X5Q8z_gC8Fi4ZP</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Gangula, Rekha</creator><creator>Mohan, V. Murali</creator><creator>Kumar, Ranjeeth</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>202212</creationdate><title>A comprehence study of DDoS attack detecting algorithm using GRU-BWFA classifier</title><author>Gangula, Rekha ; Mohan, V. Murali ; Kumar, Ranjeeth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-ba8d832ed3c08e4ec84a2b72ece054c223bcdf64ad5a6c5f2f7921ca2542d8ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Attack</topic><topic>Classification</topic><topic>DDoS</topic><topic>Deep learning</topic><topic>GRU-BWFA</topic><topic>Recurrent neural network</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gangula, Rekha</creatorcontrib><creatorcontrib>Mohan, V. Murali</creatorcontrib><creatorcontrib>Kumar, Ranjeeth</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Measurement. Sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gangula, Rekha</au><au>Mohan, V. Murali</au><au>Kumar, Ranjeeth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comprehence study of DDoS attack detecting algorithm using GRU-BWFA classifier</atitle><jtitle>Measurement. Sensors</jtitle><date>2022-12</date><risdate>2022</risdate><volume>24</volume><spage>100570</spage><pages>100570-</pages><artnum>100570</artnum><issn>2665-9174</issn><eissn>2665-9174</eissn><abstract>The suggested classifier, Gated Recurrent Unit Neural Network, is utilised to produce the appropriate classification in this research. It is based on Bidirectional weighted feature averaging (GRU-BWFA). The findings show that each classifier performs differently, with the accuracy rate ranging between the three. GRU-BWFA, the suggested system, has the greatest accuracy rate of 99.9%. The suggested approach outperformed current algorithms to categorise and identify several attacks from the SNMP-MIB dataset, including TCP-SYN, UDP flood, ICMP-echo, HTTP flood, Slow Loris, Slow Post, and Brute force, with a detection rate of 99.9%. As a result, the System is effectively restored in the shortest possible time.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.measen.2022.100570</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2665-9174
ispartof Measurement. Sensors, 2022-12, Vol.24, p.100570, Article 100570
issn 2665-9174
2665-9174
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_62116dd7193a43978c2b192653b5dee3
source Elsevier ScienceDirect Journals
subjects Attack
Classification
DDoS
Deep learning
GRU-BWFA
Recurrent neural network
title A comprehence study of DDoS attack detecting algorithm using GRU-BWFA classifier
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A40%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comprehence%20study%20of%20DDoS%20attack%20detecting%20algorithm%20using%20GRU-BWFA%20classifier&rft.jtitle=Measurement.%20Sensors&rft.au=Gangula,%20Rekha&rft.date=2022-12&rft.volume=24&rft.spage=100570&rft.pages=100570-&rft.artnum=100570&rft.issn=2665-9174&rft.eissn=2665-9174&rft_id=info:doi/10.1016/j.measen.2022.100570&rft_dat=%3Celsevier_doaj_%3ES2665917422002045%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-ba8d832ed3c08e4ec84a2b72ece054c223bcdf64ad5a6c5f2f7921ca2542d8ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true