Loading…
A comprehence study of DDoS attack detecting algorithm using GRU-BWFA classifier
The suggested classifier, Gated Recurrent Unit Neural Network, is utilised to produce the appropriate classification in this research. It is based on Bidirectional weighted feature averaging (GRU-BWFA). The findings show that each classifier performs differently, with the accuracy rate ranging betwe...
Saved in:
Published in: | Measurement. Sensors 2022-12, Vol.24, p.100570, Article 100570 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c287t-ba8d832ed3c08e4ec84a2b72ece054c223bcdf64ad5a6c5f2f7921ca2542d8ea3 |
---|---|
cites | cdi_FETCH-LOGICAL-c287t-ba8d832ed3c08e4ec84a2b72ece054c223bcdf64ad5a6c5f2f7921ca2542d8ea3 |
container_end_page | |
container_issue | |
container_start_page | 100570 |
container_title | Measurement. Sensors |
container_volume | 24 |
creator | Gangula, Rekha Mohan, V. Murali Kumar, Ranjeeth |
description | The suggested classifier, Gated Recurrent Unit Neural Network, is utilised to produce the appropriate classification in this research. It is based on Bidirectional weighted feature averaging (GRU-BWFA). The findings show that each classifier performs differently, with the accuracy rate ranging between the three. GRU-BWFA, the suggested system, has the greatest accuracy rate of 99.9%. The suggested approach outperformed current algorithms to categorise and identify several attacks from the SNMP-MIB dataset, including TCP-SYN, UDP flood, ICMP-echo, HTTP flood, Slow Loris, Slow Post, and Brute force, with a detection rate of 99.9%. As a result, the System is effectively restored in the shortest possible time. |
doi_str_mv | 10.1016/j.measen.2022.100570 |
format | article |
fullrecord | <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_62116dd7193a43978c2b192653b5dee3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2665917422002045</els_id><doaj_id>oai_doaj_org_article_62116dd7193a43978c2b192653b5dee3</doaj_id><sourcerecordid>S2665917422002045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-ba8d832ed3c08e4ec84a2b72ece054c223bcdf64ad5a6c5f2f7921ca2542d8ea3</originalsourceid><addsrcrecordid>eNp9kNtKw0AQhoMoWLRv4EVeIHV3sjndCLW1tVBQ1OLlMtmdtBvbpuymQt_ejRHxyqs5wP8x8wXBDWcjznh6W492hI72I2AAfsWSjJ0FA0jTJCp4Js7_9JfB0LmaMQa5z4IYBM_jUDW7g6UN7RWFrj3qU9hU4XTavIbYtqg-Qk0tqdbs1yFu14017WYXHl03z19W0f37zDO26JypDNnr4KLCraPhT70KVrOHt8ljtHyaLybjZaQgz9qoxFznMZCOFctJkMoFQpkBKWKJUABxqXSVCtQJpiqpoMoK4AohEaBzwvgqWPRc3WAtD9bs0J5kg0Z-Lxq7lmhbo7YkU-A81TrjRYwiLrJcQckLSJO4TDRR7FmiZynbOGep-uVxJjvJspa9ZNlJlr1kH7vrY-T__PS_S6dMp1Eb64X5Q8z_gC8Fi4ZP</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A comprehence study of DDoS attack detecting algorithm using GRU-BWFA classifier</title><source>Elsevier ScienceDirect Journals</source><creator>Gangula, Rekha ; Mohan, V. Murali ; Kumar, Ranjeeth</creator><creatorcontrib>Gangula, Rekha ; Mohan, V. Murali ; Kumar, Ranjeeth</creatorcontrib><description>The suggested classifier, Gated Recurrent Unit Neural Network, is utilised to produce the appropriate classification in this research. It is based on Bidirectional weighted feature averaging (GRU-BWFA). The findings show that each classifier performs differently, with the accuracy rate ranging between the three. GRU-BWFA, the suggested system, has the greatest accuracy rate of 99.9%. The suggested approach outperformed current algorithms to categorise and identify several attacks from the SNMP-MIB dataset, including TCP-SYN, UDP flood, ICMP-echo, HTTP flood, Slow Loris, Slow Post, and Brute force, with a detection rate of 99.9%. As a result, the System is effectively restored in the shortest possible time.</description><identifier>ISSN: 2665-9174</identifier><identifier>EISSN: 2665-9174</identifier><identifier>DOI: 10.1016/j.measen.2022.100570</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Attack ; Classification ; DDoS ; Deep learning ; GRU-BWFA ; Recurrent neural network</subject><ispartof>Measurement. Sensors, 2022-12, Vol.24, p.100570, Article 100570</ispartof><rights>2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c287t-ba8d832ed3c08e4ec84a2b72ece054c223bcdf64ad5a6c5f2f7921ca2542d8ea3</citedby><cites>FETCH-LOGICAL-c287t-ba8d832ed3c08e4ec84a2b72ece054c223bcdf64ad5a6c5f2f7921ca2542d8ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2665917422002045$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3536,27905,27906,45761</link.rule.ids></links><search><creatorcontrib>Gangula, Rekha</creatorcontrib><creatorcontrib>Mohan, V. Murali</creatorcontrib><creatorcontrib>Kumar, Ranjeeth</creatorcontrib><title>A comprehence study of DDoS attack detecting algorithm using GRU-BWFA classifier</title><title>Measurement. Sensors</title><description>The suggested classifier, Gated Recurrent Unit Neural Network, is utilised to produce the appropriate classification in this research. It is based on Bidirectional weighted feature averaging (GRU-BWFA). The findings show that each classifier performs differently, with the accuracy rate ranging between the three. GRU-BWFA, the suggested system, has the greatest accuracy rate of 99.9%. The suggested approach outperformed current algorithms to categorise and identify several attacks from the SNMP-MIB dataset, including TCP-SYN, UDP flood, ICMP-echo, HTTP flood, Slow Loris, Slow Post, and Brute force, with a detection rate of 99.9%. As a result, the System is effectively restored in the shortest possible time.</description><subject>Attack</subject><subject>Classification</subject><subject>DDoS</subject><subject>Deep learning</subject><subject>GRU-BWFA</subject><subject>Recurrent neural network</subject><issn>2665-9174</issn><issn>2665-9174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kNtKw0AQhoMoWLRv4EVeIHV3sjndCLW1tVBQ1OLlMtmdtBvbpuymQt_ejRHxyqs5wP8x8wXBDWcjznh6W492hI72I2AAfsWSjJ0FA0jTJCp4Js7_9JfB0LmaMQa5z4IYBM_jUDW7g6UN7RWFrj3qU9hU4XTavIbYtqg-Qk0tqdbs1yFu14017WYXHl03z19W0f37zDO26JypDNnr4KLCraPhT70KVrOHt8ljtHyaLybjZaQgz9qoxFznMZCOFctJkMoFQpkBKWKJUABxqXSVCtQJpiqpoMoK4AohEaBzwvgqWPRc3WAtD9bs0J5kg0Z-Lxq7lmhbo7YkU-A81TrjRYwiLrJcQckLSJO4TDRR7FmiZynbOGep-uVxJjvJspa9ZNlJlr1kH7vrY-T__PS_S6dMp1Eb64X5Q8z_gC8Fi4ZP</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Gangula, Rekha</creator><creator>Mohan, V. Murali</creator><creator>Kumar, Ranjeeth</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>202212</creationdate><title>A comprehence study of DDoS attack detecting algorithm using GRU-BWFA classifier</title><author>Gangula, Rekha ; Mohan, V. Murali ; Kumar, Ranjeeth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-ba8d832ed3c08e4ec84a2b72ece054c223bcdf64ad5a6c5f2f7921ca2542d8ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Attack</topic><topic>Classification</topic><topic>DDoS</topic><topic>Deep learning</topic><topic>GRU-BWFA</topic><topic>Recurrent neural network</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gangula, Rekha</creatorcontrib><creatorcontrib>Mohan, V. Murali</creatorcontrib><creatorcontrib>Kumar, Ranjeeth</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Measurement. Sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gangula, Rekha</au><au>Mohan, V. Murali</au><au>Kumar, Ranjeeth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comprehence study of DDoS attack detecting algorithm using GRU-BWFA classifier</atitle><jtitle>Measurement. Sensors</jtitle><date>2022-12</date><risdate>2022</risdate><volume>24</volume><spage>100570</spage><pages>100570-</pages><artnum>100570</artnum><issn>2665-9174</issn><eissn>2665-9174</eissn><abstract>The suggested classifier, Gated Recurrent Unit Neural Network, is utilised to produce the appropriate classification in this research. It is based on Bidirectional weighted feature averaging (GRU-BWFA). The findings show that each classifier performs differently, with the accuracy rate ranging between the three. GRU-BWFA, the suggested system, has the greatest accuracy rate of 99.9%. The suggested approach outperformed current algorithms to categorise and identify several attacks from the SNMP-MIB dataset, including TCP-SYN, UDP flood, ICMP-echo, HTTP flood, Slow Loris, Slow Post, and Brute force, with a detection rate of 99.9%. As a result, the System is effectively restored in the shortest possible time.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.measen.2022.100570</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2665-9174 |
ispartof | Measurement. Sensors, 2022-12, Vol.24, p.100570, Article 100570 |
issn | 2665-9174 2665-9174 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_62116dd7193a43978c2b192653b5dee3 |
source | Elsevier ScienceDirect Journals |
subjects | Attack Classification DDoS Deep learning GRU-BWFA Recurrent neural network |
title | A comprehence study of DDoS attack detecting algorithm using GRU-BWFA classifier |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A40%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comprehence%20study%20of%20DDoS%20attack%20detecting%20algorithm%20using%20GRU-BWFA%20classifier&rft.jtitle=Measurement.%20Sensors&rft.au=Gangula,%20Rekha&rft.date=2022-12&rft.volume=24&rft.spage=100570&rft.pages=100570-&rft.artnum=100570&rft.issn=2665-9174&rft.eissn=2665-9174&rft_id=info:doi/10.1016/j.measen.2022.100570&rft_dat=%3Celsevier_doaj_%3ES2665917422002045%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c287t-ba8d832ed3c08e4ec84a2b72ece054c223bcdf64ad5a6c5f2f7921ca2542d8ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |