Loading…
An Algorithm Using DBSCAN to Solve the Velocity Dealiasing Problem
Velocity dealiasing is an essential task for correcting the radial velocity data collected by Doppler radar. To improve the accuracy of velocity dealiasing, traditional dealiasing algorithms usually set a series of empirical thresholds, combine three- or four-dimensional data, or introduce other obs...
Saved in:
Published in: | Advances in meteorology 2021-12, Vol.2021, p.1-9 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Velocity dealiasing is an essential task for correcting the radial velocity data collected by Doppler radar. To improve the accuracy of velocity dealiasing, traditional dealiasing algorithms usually set a series of empirical thresholds, combine three- or four-dimensional data, or introduce other observation data as a reference. In this study, we transform the velocity dealiasing problem into a clustering problem and solve this problem using the density-based spatial clustering of applications with noise (DBSCAN) method. This algorithm is verified with a case study involving radar data on the tropical cyclone Mangkhut in 2018. The results show that the accuracy of the proposed algorithm is close to that of the four-dimensional dealiasing (4DD) method proposed by James and Houze; yet, it only requires two-dimensional velocity data and eliminates the need for other reference data. The results of the case study also show that the 4DD algorithm filters out many observation gates close to the missing data or radar center, whereas the proposed algorithm tends to retain and correct these gates. |
---|---|
ISSN: | 1687-9309 1687-9317 |
DOI: | 10.1155/2021/9705412 |