Loading…
Experimental Application of Methods to Compute Solar Irradiance and Cell Temperature of Photovoltaic Modules
solar irradiance and cell temperature are the most significant aspects when assessing the production of a photovoltaic system. To avoid the need of specific sensors for quantifying such parameters, recent literature presents methods to estimate them through electrical measurements, using the photovo...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2020-04, Vol.20 (9), p.2490 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c503t-cc43aeffad4a909cdc808c2cff4d1537bf3438748207f375ccba8e99818ea7f03 |
---|---|
cites | cdi_FETCH-LOGICAL-c503t-cc43aeffad4a909cdc808c2cff4d1537bf3438748207f375ccba8e99818ea7f03 |
container_end_page | |
container_issue | 9 |
container_start_page | 2490 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 20 |
creator | Abe, Caio Felippe Dias, João Batista Notton, Gilles Faggianelli, Ghjuvan Antone |
description | solar irradiance and cell temperature are the most significant aspects when assessing the production of a photovoltaic system. To avoid the need of specific sensors for quantifying such parameters, recent literature presents methods to estimate them through electrical measurements, using the photovoltaic module itself as a sensor. This work presents an application of such methods to data recorded using a research platform at University of Corsica, in France. The methods and the platform are briefly presented and the results are shown and discussed in terms of normalized mean absolute errors (nMAE) and root mean square errors (nRMSE) for various irradiance and cell temperature levels. The nMAE (and nRMSE) for solar irradiance are respectively between 3.5% and 3.9% (4.2% and 4.7%). Such errors on computed irradiance are in the same order of magnitude as those found in the literature, with a simple implementation. For cell temperatures estimation, the nMAE and nRMSE were found to be in the range 3.4%-8.2% and 4.3%-10.7%. These results show that using such methods could provide an estimation for the values of irradiance and cell temperature, even if the modules are not new and are not regularly cleaned, but of course not partially shaded. |
doi_str_mv | 10.3390/s20092490 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_621912e756ca4f0289388cf856ab759b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_621912e756ca4f0289388cf856ab759b</doaj_id><sourcerecordid>2397682686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-cc43aeffad4a909cdc808c2cff4d1537bf3438748207f375ccba8e99818ea7f03</originalsourceid><addsrcrecordid>eNpdkl1v2yAUhq1p1fqxXewPTEi7aS-yYsAGbiZFUbdGStVK667RMYbGETYe4Gj79yNNl7W9Ag7vec5nUXws8RdKJb6MBGNJmMRvipOSETYThOC3z-7HxWmMG4wJpVS8K44poRXLr5PCXf0eTeh6MyRwaD6OrtOQOj8gb9GNSWvfRpQ8Wvh-nJJBP7yDgJYhQNvBoA2CoUUL4xy6N30mQZqC2fnerX3yW-8SdBrd-HZyJr4vjiy4aD48nWfFz29X94vr2er2-3IxX810hWmaac0oGGuhZSCx1K0WWGiirWVtWVHeWMqo4EwQzC3lldYNCCOlKIUBbjE9K5Z7butho8ZcHoQ_ykOnHg0-PCgIqdPOqJqUsiSGV7UGZjERkgqhrahqaHglm8z6umeNU9ObVudGBXAvoC9_hm6tHvxW8TyQPJ0MuNgD1q_crucrtbNhilkpBN-WWXv-FCz4X5OJSfVd1Lm7MBg_RUWo5LUgtaiz9PMr6cZPYchtfVQRgUld_w-ug48xGHvIoMRqtzvqsDtZ--l5pQflv2WhfwFrFr6Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397280266</pqid></control><display><type>article</type><title>Experimental Application of Methods to Compute Solar Irradiance and Cell Temperature of Photovoltaic Modules</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Abe, Caio Felippe ; Dias, João Batista ; Notton, Gilles ; Faggianelli, Ghjuvan Antone</creator><creatorcontrib>Abe, Caio Felippe ; Dias, João Batista ; Notton, Gilles ; Faggianelli, Ghjuvan Antone</creatorcontrib><description>solar irradiance and cell temperature are the most significant aspects when assessing the production of a photovoltaic system. To avoid the need of specific sensors for quantifying such parameters, recent literature presents methods to estimate them through electrical measurements, using the photovoltaic module itself as a sensor. This work presents an application of such methods to data recorded using a research platform at University of Corsica, in France. The methods and the platform are briefly presented and the results are shown and discussed in terms of normalized mean absolute errors (nMAE) and root mean square errors (nRMSE) for various irradiance and cell temperature levels. The nMAE (and nRMSE) for solar irradiance are respectively between 3.5% and 3.9% (4.2% and 4.7%). Such errors on computed irradiance are in the same order of magnitude as those found in the literature, with a simple implementation. For cell temperatures estimation, the nMAE and nRMSE were found to be in the range 3.4%-8.2% and 4.3%-10.7%. These results show that using such methods could provide an estimation for the values of irradiance and cell temperature, even if the modules are not new and are not regularly cleaned, but of course not partially shaded.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s20092490</identifier><identifier>PMID: 32354023</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Alternative energy sources ; Costs ; Electric power ; Electrical measurement ; Engineering Sciences ; estimation of PV cell temperature ; estimation of solar irradiance ; Irradiance ; Iterative methods ; Mean square errors ; Methods ; Parameter estimation ; Photovoltaic cells ; PV modeling ; PV module as a sensor ; Sensors ; Solar Energy ; Sunlight ; Temperature ; Temperature effects</subject><ispartof>Sensors (Basel, Switzerland), 2020-04, Vol.20 (9), p.2490</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-cc43aeffad4a909cdc808c2cff4d1537bf3438748207f375ccba8e99818ea7f03</citedby><cites>FETCH-LOGICAL-c503t-cc43aeffad4a909cdc808c2cff4d1537bf3438748207f375ccba8e99818ea7f03</cites><orcidid>0000-0002-9873-9350 ; 0000-0002-6267-9632</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2397280266/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2397280266?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32354023$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://univ-corse.hal.science/hal-03041887$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Abe, Caio Felippe</creatorcontrib><creatorcontrib>Dias, João Batista</creatorcontrib><creatorcontrib>Notton, Gilles</creatorcontrib><creatorcontrib>Faggianelli, Ghjuvan Antone</creatorcontrib><title>Experimental Application of Methods to Compute Solar Irradiance and Cell Temperature of Photovoltaic Modules</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>solar irradiance and cell temperature are the most significant aspects when assessing the production of a photovoltaic system. To avoid the need of specific sensors for quantifying such parameters, recent literature presents methods to estimate them through electrical measurements, using the photovoltaic module itself as a sensor. This work presents an application of such methods to data recorded using a research platform at University of Corsica, in France. The methods and the platform are briefly presented and the results are shown and discussed in terms of normalized mean absolute errors (nMAE) and root mean square errors (nRMSE) for various irradiance and cell temperature levels. The nMAE (and nRMSE) for solar irradiance are respectively between 3.5% and 3.9% (4.2% and 4.7%). Such errors on computed irradiance are in the same order of magnitude as those found in the literature, with a simple implementation. For cell temperatures estimation, the nMAE and nRMSE were found to be in the range 3.4%-8.2% and 4.3%-10.7%. These results show that using such methods could provide an estimation for the values of irradiance and cell temperature, even if the modules are not new and are not regularly cleaned, but of course not partially shaded.</description><subject>Accuracy</subject><subject>Alternative energy sources</subject><subject>Costs</subject><subject>Electric power</subject><subject>Electrical measurement</subject><subject>Engineering Sciences</subject><subject>estimation of PV cell temperature</subject><subject>estimation of solar irradiance</subject><subject>Irradiance</subject><subject>Iterative methods</subject><subject>Mean square errors</subject><subject>Methods</subject><subject>Parameter estimation</subject><subject>Photovoltaic cells</subject><subject>PV modeling</subject><subject>PV module as a sensor</subject><subject>Sensors</subject><subject>Solar Energy</subject><subject>Sunlight</subject><subject>Temperature</subject><subject>Temperature effects</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkl1v2yAUhq1p1fqxXewPTEi7aS-yYsAGbiZFUbdGStVK667RMYbGETYe4Gj79yNNl7W9Ag7vec5nUXws8RdKJb6MBGNJmMRvipOSETYThOC3z-7HxWmMG4wJpVS8K44poRXLr5PCXf0eTeh6MyRwaD6OrtOQOj8gb9GNSWvfRpQ8Wvh-nJJBP7yDgJYhQNvBoA2CoUUL4xy6N30mQZqC2fnerX3yW-8SdBrd-HZyJr4vjiy4aD48nWfFz29X94vr2er2-3IxX810hWmaac0oGGuhZSCx1K0WWGiirWVtWVHeWMqo4EwQzC3lldYNCCOlKIUBbjE9K5Z7butho8ZcHoQ_ykOnHg0-PCgIqdPOqJqUsiSGV7UGZjERkgqhrahqaHglm8z6umeNU9ObVudGBXAvoC9_hm6tHvxW8TyQPJ0MuNgD1q_crucrtbNhilkpBN-WWXv-FCz4X5OJSfVd1Lm7MBg_RUWo5LUgtaiz9PMr6cZPYchtfVQRgUld_w-ug48xGHvIoMRqtzvqsDtZ--l5pQflv2WhfwFrFr6Q</recordid><startdate>20200428</startdate><enddate>20200428</enddate><creator>Abe, Caio Felippe</creator><creator>Dias, João Batista</creator><creator>Notton, Gilles</creator><creator>Faggianelli, Ghjuvan Antone</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9873-9350</orcidid><orcidid>https://orcid.org/0000-0002-6267-9632</orcidid></search><sort><creationdate>20200428</creationdate><title>Experimental Application of Methods to Compute Solar Irradiance and Cell Temperature of Photovoltaic Modules</title><author>Abe, Caio Felippe ; Dias, João Batista ; Notton, Gilles ; Faggianelli, Ghjuvan Antone</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-cc43aeffad4a909cdc808c2cff4d1537bf3438748207f375ccba8e99818ea7f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Alternative energy sources</topic><topic>Costs</topic><topic>Electric power</topic><topic>Electrical measurement</topic><topic>Engineering Sciences</topic><topic>estimation of PV cell temperature</topic><topic>estimation of solar irradiance</topic><topic>Irradiance</topic><topic>Iterative methods</topic><topic>Mean square errors</topic><topic>Methods</topic><topic>Parameter estimation</topic><topic>Photovoltaic cells</topic><topic>PV modeling</topic><topic>PV module as a sensor</topic><topic>Sensors</topic><topic>Solar Energy</topic><topic>Sunlight</topic><topic>Temperature</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abe, Caio Felippe</creatorcontrib><creatorcontrib>Dias, João Batista</creatorcontrib><creatorcontrib>Notton, Gilles</creatorcontrib><creatorcontrib>Faggianelli, Ghjuvan Antone</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abe, Caio Felippe</au><au>Dias, João Batista</au><au>Notton, Gilles</au><au>Faggianelli, Ghjuvan Antone</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Application of Methods to Compute Solar Irradiance and Cell Temperature of Photovoltaic Modules</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2020-04-28</date><risdate>2020</risdate><volume>20</volume><issue>9</issue><spage>2490</spage><pages>2490-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>solar irradiance and cell temperature are the most significant aspects when assessing the production of a photovoltaic system. To avoid the need of specific sensors for quantifying such parameters, recent literature presents methods to estimate them through electrical measurements, using the photovoltaic module itself as a sensor. This work presents an application of such methods to data recorded using a research platform at University of Corsica, in France. The methods and the platform are briefly presented and the results are shown and discussed in terms of normalized mean absolute errors (nMAE) and root mean square errors (nRMSE) for various irradiance and cell temperature levels. The nMAE (and nRMSE) for solar irradiance are respectively between 3.5% and 3.9% (4.2% and 4.7%). Such errors on computed irradiance are in the same order of magnitude as those found in the literature, with a simple implementation. For cell temperatures estimation, the nMAE and nRMSE were found to be in the range 3.4%-8.2% and 4.3%-10.7%. These results show that using such methods could provide an estimation for the values of irradiance and cell temperature, even if the modules are not new and are not regularly cleaned, but of course not partially shaded.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>32354023</pmid><doi>10.3390/s20092490</doi><orcidid>https://orcid.org/0000-0002-9873-9350</orcidid><orcidid>https://orcid.org/0000-0002-6267-9632</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2020-04, Vol.20 (9), p.2490 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_621912e756ca4f0289388cf856ab759b |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Accuracy Alternative energy sources Costs Electric power Electrical measurement Engineering Sciences estimation of PV cell temperature estimation of solar irradiance Irradiance Iterative methods Mean square errors Methods Parameter estimation Photovoltaic cells PV modeling PV module as a sensor Sensors Solar Energy Sunlight Temperature Temperature effects |
title | Experimental Application of Methods to Compute Solar Irradiance and Cell Temperature of Photovoltaic Modules |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A47%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Application%20of%20Methods%20to%20Compute%20Solar%20Irradiance%20and%20Cell%20Temperature%20of%20Photovoltaic%20Modules&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Abe,%20Caio%20Felippe&rft.date=2020-04-28&rft.volume=20&rft.issue=9&rft.spage=2490&rft.pages=2490-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s20092490&rft_dat=%3Cproquest_doaj_%3E2397682686%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c503t-cc43aeffad4a909cdc808c2cff4d1537bf3438748207f375ccba8e99818ea7f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2397280266&rft_id=info:pmid/32354023&rfr_iscdi=true |