Loading…

Experimental Application of Methods to Compute Solar Irradiance and Cell Temperature of Photovoltaic Modules

solar irradiance and cell temperature are the most significant aspects when assessing the production of a photovoltaic system. To avoid the need of specific sensors for quantifying such parameters, recent literature presents methods to estimate them through electrical measurements, using the photovo...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2020-04, Vol.20 (9), p.2490
Main Authors: Abe, Caio Felippe, Dias, João Batista, Notton, Gilles, Faggianelli, Ghjuvan Antone
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c503t-cc43aeffad4a909cdc808c2cff4d1537bf3438748207f375ccba8e99818ea7f03
cites cdi_FETCH-LOGICAL-c503t-cc43aeffad4a909cdc808c2cff4d1537bf3438748207f375ccba8e99818ea7f03
container_end_page
container_issue 9
container_start_page 2490
container_title Sensors (Basel, Switzerland)
container_volume 20
creator Abe, Caio Felippe
Dias, João Batista
Notton, Gilles
Faggianelli, Ghjuvan Antone
description solar irradiance and cell temperature are the most significant aspects when assessing the production of a photovoltaic system. To avoid the need of specific sensors for quantifying such parameters, recent literature presents methods to estimate them through electrical measurements, using the photovoltaic module itself as a sensor. This work presents an application of such methods to data recorded using a research platform at University of Corsica, in France. The methods and the platform are briefly presented and the results are shown and discussed in terms of normalized mean absolute errors (nMAE) and root mean square errors (nRMSE) for various irradiance and cell temperature levels. The nMAE (and nRMSE) for solar irradiance are respectively between 3.5% and 3.9% (4.2% and 4.7%). Such errors on computed irradiance are in the same order of magnitude as those found in the literature, with a simple implementation. For cell temperatures estimation, the nMAE and nRMSE were found to be in the range 3.4%-8.2% and 4.3%-10.7%. These results show that using such methods could provide an estimation for the values of irradiance and cell temperature, even if the modules are not new and are not regularly cleaned, but of course not partially shaded.
doi_str_mv 10.3390/s20092490
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_621912e756ca4f0289388cf856ab759b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_621912e756ca4f0289388cf856ab759b</doaj_id><sourcerecordid>2397682686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-cc43aeffad4a909cdc808c2cff4d1537bf3438748207f375ccba8e99818ea7f03</originalsourceid><addsrcrecordid>eNpdkl1v2yAUhq1p1fqxXewPTEi7aS-yYsAGbiZFUbdGStVK667RMYbGETYe4Gj79yNNl7W9Ag7vec5nUXws8RdKJb6MBGNJmMRvipOSETYThOC3z-7HxWmMG4wJpVS8K44poRXLr5PCXf0eTeh6MyRwaD6OrtOQOj8gb9GNSWvfRpQ8Wvh-nJJBP7yDgJYhQNvBoA2CoUUL4xy6N30mQZqC2fnerX3yW-8SdBrd-HZyJr4vjiy4aD48nWfFz29X94vr2er2-3IxX810hWmaac0oGGuhZSCx1K0WWGiirWVtWVHeWMqo4EwQzC3lldYNCCOlKIUBbjE9K5Z7butho8ZcHoQ_ykOnHg0-PCgIqdPOqJqUsiSGV7UGZjERkgqhrahqaHglm8z6umeNU9ObVudGBXAvoC9_hm6tHvxW8TyQPJ0MuNgD1q_crucrtbNhilkpBN-WWXv-FCz4X5OJSfVd1Lm7MBg_RUWo5LUgtaiz9PMr6cZPYchtfVQRgUld_w-ug48xGHvIoMRqtzvqsDtZ--l5pQflv2WhfwFrFr6Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397280266</pqid></control><display><type>article</type><title>Experimental Application of Methods to Compute Solar Irradiance and Cell Temperature of Photovoltaic Modules</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Abe, Caio Felippe ; Dias, João Batista ; Notton, Gilles ; Faggianelli, Ghjuvan Antone</creator><creatorcontrib>Abe, Caio Felippe ; Dias, João Batista ; Notton, Gilles ; Faggianelli, Ghjuvan Antone</creatorcontrib><description>solar irradiance and cell temperature are the most significant aspects when assessing the production of a photovoltaic system. To avoid the need of specific sensors for quantifying such parameters, recent literature presents methods to estimate them through electrical measurements, using the photovoltaic module itself as a sensor. This work presents an application of such methods to data recorded using a research platform at University of Corsica, in France. The methods and the platform are briefly presented and the results are shown and discussed in terms of normalized mean absolute errors (nMAE) and root mean square errors (nRMSE) for various irradiance and cell temperature levels. The nMAE (and nRMSE) for solar irradiance are respectively between 3.5% and 3.9% (4.2% and 4.7%). Such errors on computed irradiance are in the same order of magnitude as those found in the literature, with a simple implementation. For cell temperatures estimation, the nMAE and nRMSE were found to be in the range 3.4%-8.2% and 4.3%-10.7%. These results show that using such methods could provide an estimation for the values of irradiance and cell temperature, even if the modules are not new and are not regularly cleaned, but of course not partially shaded.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s20092490</identifier><identifier>PMID: 32354023</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Alternative energy sources ; Costs ; Electric power ; Electrical measurement ; Engineering Sciences ; estimation of PV cell temperature ; estimation of solar irradiance ; Irradiance ; Iterative methods ; Mean square errors ; Methods ; Parameter estimation ; Photovoltaic cells ; PV modeling ; PV module as a sensor ; Sensors ; Solar Energy ; Sunlight ; Temperature ; Temperature effects</subject><ispartof>Sensors (Basel, Switzerland), 2020-04, Vol.20 (9), p.2490</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-cc43aeffad4a909cdc808c2cff4d1537bf3438748207f375ccba8e99818ea7f03</citedby><cites>FETCH-LOGICAL-c503t-cc43aeffad4a909cdc808c2cff4d1537bf3438748207f375ccba8e99818ea7f03</cites><orcidid>0000-0002-9873-9350 ; 0000-0002-6267-9632</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2397280266/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2397280266?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32354023$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://univ-corse.hal.science/hal-03041887$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Abe, Caio Felippe</creatorcontrib><creatorcontrib>Dias, João Batista</creatorcontrib><creatorcontrib>Notton, Gilles</creatorcontrib><creatorcontrib>Faggianelli, Ghjuvan Antone</creatorcontrib><title>Experimental Application of Methods to Compute Solar Irradiance and Cell Temperature of Photovoltaic Modules</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>solar irradiance and cell temperature are the most significant aspects when assessing the production of a photovoltaic system. To avoid the need of specific sensors for quantifying such parameters, recent literature presents methods to estimate them through electrical measurements, using the photovoltaic module itself as a sensor. This work presents an application of such methods to data recorded using a research platform at University of Corsica, in France. The methods and the platform are briefly presented and the results are shown and discussed in terms of normalized mean absolute errors (nMAE) and root mean square errors (nRMSE) for various irradiance and cell temperature levels. The nMAE (and nRMSE) for solar irradiance are respectively between 3.5% and 3.9% (4.2% and 4.7%). Such errors on computed irradiance are in the same order of magnitude as those found in the literature, with a simple implementation. For cell temperatures estimation, the nMAE and nRMSE were found to be in the range 3.4%-8.2% and 4.3%-10.7%. These results show that using such methods could provide an estimation for the values of irradiance and cell temperature, even if the modules are not new and are not regularly cleaned, but of course not partially shaded.</description><subject>Accuracy</subject><subject>Alternative energy sources</subject><subject>Costs</subject><subject>Electric power</subject><subject>Electrical measurement</subject><subject>Engineering Sciences</subject><subject>estimation of PV cell temperature</subject><subject>estimation of solar irradiance</subject><subject>Irradiance</subject><subject>Iterative methods</subject><subject>Mean square errors</subject><subject>Methods</subject><subject>Parameter estimation</subject><subject>Photovoltaic cells</subject><subject>PV modeling</subject><subject>PV module as a sensor</subject><subject>Sensors</subject><subject>Solar Energy</subject><subject>Sunlight</subject><subject>Temperature</subject><subject>Temperature effects</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkl1v2yAUhq1p1fqxXewPTEi7aS-yYsAGbiZFUbdGStVK667RMYbGETYe4Gj79yNNl7W9Ag7vec5nUXws8RdKJb6MBGNJmMRvipOSETYThOC3z-7HxWmMG4wJpVS8K44poRXLr5PCXf0eTeh6MyRwaD6OrtOQOj8gb9GNSWvfRpQ8Wvh-nJJBP7yDgJYhQNvBoA2CoUUL4xy6N30mQZqC2fnerX3yW-8SdBrd-HZyJr4vjiy4aD48nWfFz29X94vr2er2-3IxX810hWmaac0oGGuhZSCx1K0WWGiirWVtWVHeWMqo4EwQzC3lldYNCCOlKIUBbjE9K5Z7butho8ZcHoQ_ykOnHg0-PCgIqdPOqJqUsiSGV7UGZjERkgqhrahqaHglm8z6umeNU9ObVudGBXAvoC9_hm6tHvxW8TyQPJ0MuNgD1q_crucrtbNhilkpBN-WWXv-FCz4X5OJSfVd1Lm7MBg_RUWo5LUgtaiz9PMr6cZPYchtfVQRgUld_w-ug48xGHvIoMRqtzvqsDtZ--l5pQflv2WhfwFrFr6Q</recordid><startdate>20200428</startdate><enddate>20200428</enddate><creator>Abe, Caio Felippe</creator><creator>Dias, João Batista</creator><creator>Notton, Gilles</creator><creator>Faggianelli, Ghjuvan Antone</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9873-9350</orcidid><orcidid>https://orcid.org/0000-0002-6267-9632</orcidid></search><sort><creationdate>20200428</creationdate><title>Experimental Application of Methods to Compute Solar Irradiance and Cell Temperature of Photovoltaic Modules</title><author>Abe, Caio Felippe ; Dias, João Batista ; Notton, Gilles ; Faggianelli, Ghjuvan Antone</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-cc43aeffad4a909cdc808c2cff4d1537bf3438748207f375ccba8e99818ea7f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Alternative energy sources</topic><topic>Costs</topic><topic>Electric power</topic><topic>Electrical measurement</topic><topic>Engineering Sciences</topic><topic>estimation of PV cell temperature</topic><topic>estimation of solar irradiance</topic><topic>Irradiance</topic><topic>Iterative methods</topic><topic>Mean square errors</topic><topic>Methods</topic><topic>Parameter estimation</topic><topic>Photovoltaic cells</topic><topic>PV modeling</topic><topic>PV module as a sensor</topic><topic>Sensors</topic><topic>Solar Energy</topic><topic>Sunlight</topic><topic>Temperature</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abe, Caio Felippe</creatorcontrib><creatorcontrib>Dias, João Batista</creatorcontrib><creatorcontrib>Notton, Gilles</creatorcontrib><creatorcontrib>Faggianelli, Ghjuvan Antone</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abe, Caio Felippe</au><au>Dias, João Batista</au><au>Notton, Gilles</au><au>Faggianelli, Ghjuvan Antone</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Application of Methods to Compute Solar Irradiance and Cell Temperature of Photovoltaic Modules</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2020-04-28</date><risdate>2020</risdate><volume>20</volume><issue>9</issue><spage>2490</spage><pages>2490-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>solar irradiance and cell temperature are the most significant aspects when assessing the production of a photovoltaic system. To avoid the need of specific sensors for quantifying such parameters, recent literature presents methods to estimate them through electrical measurements, using the photovoltaic module itself as a sensor. This work presents an application of such methods to data recorded using a research platform at University of Corsica, in France. The methods and the platform are briefly presented and the results are shown and discussed in terms of normalized mean absolute errors (nMAE) and root mean square errors (nRMSE) for various irradiance and cell temperature levels. The nMAE (and nRMSE) for solar irradiance are respectively between 3.5% and 3.9% (4.2% and 4.7%). Such errors on computed irradiance are in the same order of magnitude as those found in the literature, with a simple implementation. For cell temperatures estimation, the nMAE and nRMSE were found to be in the range 3.4%-8.2% and 4.3%-10.7%. These results show that using such methods could provide an estimation for the values of irradiance and cell temperature, even if the modules are not new and are not regularly cleaned, but of course not partially shaded.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>32354023</pmid><doi>10.3390/s20092490</doi><orcidid>https://orcid.org/0000-0002-9873-9350</orcidid><orcidid>https://orcid.org/0000-0002-6267-9632</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2020-04, Vol.20 (9), p.2490
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_621912e756ca4f0289388cf856ab759b
source Publicly Available Content (ProQuest); PubMed Central
subjects Accuracy
Alternative energy sources
Costs
Electric power
Electrical measurement
Engineering Sciences
estimation of PV cell temperature
estimation of solar irradiance
Irradiance
Iterative methods
Mean square errors
Methods
Parameter estimation
Photovoltaic cells
PV modeling
PV module as a sensor
Sensors
Solar Energy
Sunlight
Temperature
Temperature effects
title Experimental Application of Methods to Compute Solar Irradiance and Cell Temperature of Photovoltaic Modules
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A47%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Application%20of%20Methods%20to%20Compute%20Solar%20Irradiance%20and%20Cell%20Temperature%20of%20Photovoltaic%20Modules&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Abe,%20Caio%20Felippe&rft.date=2020-04-28&rft.volume=20&rft.issue=9&rft.spage=2490&rft.pages=2490-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s20092490&rft_dat=%3Cproquest_doaj_%3E2397682686%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c503t-cc43aeffad4a909cdc808c2cff4d1537bf3438748207f375ccba8e99818ea7f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2397280266&rft_id=info:pmid/32354023&rfr_iscdi=true